Abstract

Hydrogen emerges as a promising fuel for clean and sustainable electricity production when utilized in microgas turbines (mGTs). However, some challenges linked to hydrogen usage must be overcome as its high reactivity can lead to increased NOx emissions and flame instabilities. Literature suggests that combustion air humidification and/or exhaust gas recirculation (EGR) may be methods to reduce this reactivity. However, these measures are limited due to the small operating range of the mGT combustor. In this context, a 20 kWth mGT combustor is investigated under various inlet conditions to assess the effect of EGR toward increased flame stability and emission control when operating under hydrogen-enriched methane firing, using a chemical reactor network (CRN) model. The CRN modeling is a fast and low computational complexity tool to model combustion performance and emissions by representing complex reactive flow fields through idealized reactor models, leading to reduced computational costs. This study examines partial load conditions, fuel compositions, and the effect of combustion air dilution through EGR. The CRN model of the combustion process is designed based on combustion zones extracted from the main flow fields with similar thermochemical states from computational fluid dynamics (CFD) analysis, while emission predictions are experimentally validated for different operating points. Predicted NOx and CO emissions by the proposed CRN model show an acceptable agreement with the experimental data at high power loads. However, its accuracy diminishes for loads below 70% due to the variability in model tuning parameters across different loads, whereas the current model is optimized for 90% load conditions. At full load with the activation of EGR, these emissions are reduced by approximately 20%. CRN results predict that NOx emissions do not increase excessively by hydrogen addition due to the constant power operation of the mGT. Indeed, the higher reactivity of hydrogen leads to a lower fuel flow rate and, thus, leaner operating conditions. On the other hand, CO emissions decrease by 15% to 40% when adding hydrogen from 5% to 50% of the volume fraction to natural gas (NG). Finally, air dilution by EGR positively affects flame temperature and NOx emissions. Tuning CRN models that are not dependent on specific load parameters to get a better agreement with experimental data, as well as EGR/humidified air dilution effects on partial loads and hydrogen-added fuels, are subjects to future work.

References

1.
IEA,
2023
, “
Renewable Energy Market Update
,” Report, International Energy Agency (IEA), Paris, France, accessed June 2023, https://www.iea.org/reports/renewable-energy-market-update-june-2023
2.
Marragou
,
S.
,
Magnes
,
H.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Stabilization Regimes and Pollutant Emissions From a Dual Fuel CH4/H2 and Dual Swirl Low NOx Burner
,”
Int. J. Hydrogen Energy
,
47
(
44
), pp.
19275
19288
.10.1016/j.ijhydene.2022.04.033
3.
Iavarone
,
S.
,
Cafiero
,
M.
,
Ferrarotti
,
M.
,
Contino
,
F.
, and
Parente
,
A.
,
2019
, “
A Multiscale Combustion Model Formulation for NOx Predictions in Hydrogen Enriched Jet Flames
,”
Int. J. Hydrogen Energy
,
44
(
41
), pp.
23436
23457
.10.1016/j.ijhydene.2019.07.019
4.
Lyra
,
S.
, and
Cant
,
R. S.
,
2013
, “
Analysis of High Pressure Premixed Flames Using Equivalent Reactor Networks for Predicting NOx Emissions
,”
Fuel
,
107
, pp.
261
268
.10.1016/j.fuel.2012.12.066
5.
Innocenti
,
A.
,
Andreini
,
A.
,
Bertini
,
D.
,
Facchini
,
B.
, and
Motta
,
M.
,
2018
, “
Turbulent Flow-Field Effects in a Hybrid CFD-CRN Model for the Prediction of NOx and CO Emissions in Aero-Engine Combustors
,”
Fuel
,
215
, pp.
853
864
.10.1016/j.fuel.2017.11.097
6.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
7.
Fackler
,
K. B.
,
Karalus
,
M.
,
Novosselov
,
I.
,
Kramlich
,
J.
, and
Malte
,
P.
,
2015
, “
NOx Behavior for Lean-Premixed Combustion of Alternative Gaseous Fuels
,”
ASME J. Eng. Gas Turbines Power
, 138(4), p.
041504
.10.1115/1.4031478
8.
Elkady
,
A. M.
,
Herbon
,
J.
,
Kalitan
,
D. M.
,
Leonard
,
G.
,
Akula
,
R.
,
Karim
,
H.
, and
Hadley
,
M.
,
2012
, “
Gas Turbine Emission Characteristics in Perfectly Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061501
.10.1115/1.4006058
9.
Savarese
,
M.
,
Bompas
,
J.
,
De Paepe
,
W.
, and
Parente
,
A.
,
2022
, “
Towards Fast Prediction of Flame Stability and Emissions of mGT Combustion Chambers: A Chemical Reactor Network Approach
,”
ASME
Paper No. GT2022-81963.10.1115/GT2022-81963
10.
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Reale
,
F.
,
2014
, “
Part Load Behavior of a Micro Gas Turbine Fed With Different Fuels
,”
ASME
Paper No. GT2014-26631.10.1115/GT2014-26631
11.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F. D.
,
2021
, “
Bayesian Inference and Uncertainty Quantification for Hydrogen-Enriched and Lean-Premixed Combustion Systems
,”
Int. J. Hydrogen Energy
,
46
(
46
), pp.
23927
23942
.10.1016/j.ijhydene.2021.04.153
12.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2003, “
Micro Humid Air Cycle: Part A—Thermodynamic and Technical Aspects
,”
ASME
Paper No. GT2003-38326.10.1115/GT2003-38326
13.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2017
, “
Does Humidification Improve the Micro Gas Turbine Cycle? Thermodynamic Assessment Based on Sankey and Grassmann Diagrams
,”
Appl. Energy
,
204
, pp.
1163
1171
.10.1016/j.apenergy.2017.05.067
14.
Reale
,
F.
, and
Sannino
,
R.
,
2021
, “
Water and Steam Injection in Micro Gas Turbine Supplied by Hydrogen Enriched Fuels: Numerical Investigation and Performance Analysis
,”
Int. J. Hydrogen Energy
,
46
(
47
), pp.
24366
24381
.10.1016/j.ijhydene.2021.04.169
15.
Bazooyar
,
B.
, and
Darabkhani
,
H. G.
,
2019
, “
Design and Numerical Analysis of a 3 kWe Flameless Microturbine Combustor for Hydrogen Fuel
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
11134
11144
.10.1016/j.ijhydene.2019.02.132
16.
Fortunato
,
V.
,
Giraldo
,
A.
,
Rouabah
,
M.
,
Nacereddine
,
R.
,
Delanaye
,
M.
, and
Parente
,
A.
,
2018
, “
Experimental and Numerical Investigation of a MILD Combustion Chamber for Micro Gas Turbine Applications
,”
Energies
,
11
(
12
), p.
3363
.10.3390/en11123363
17.
Muduli
,
S. K.
,
Mishra
,
R. K.
, and
Mishra
,
P. C.
,
2021
, “
Assessment of Exit Temperature Pattern Factors in an Annular Gas Turbine Combustor: An Overview
,”
Int. J. Turbo Jet-Engines
,
38
(
4
), pp.
351
361
.10.1515/tjj-2019-0009
18.
Pappa
,
A.
,
Nicolosi
,
F. F.
,
Verhaeghe
,
A.
,
Bricteux
,
L.
,
Renzi
,
M.
, and
De Paepe
,
W.
, 2021, “
Performance and Emission Assessment on a 3 kW Micro Gas Turbine: Comparison of RANS and LES Predictions
,”
ASME
Paper No. GT2021-59618.10.1115/GT2021-59618
19.
Piscopo
,
A.
,
Yousefzad
,
Farrokhi
,
F.
,
Parente
,
A.
, and
De Paepe
,
W.
,
2023
, “
Numerical Study of the Impact of H2 in a CH4-Fuelled Micro Gas Turbine Combustion Chamber
,” European Combustion Meeting (ECM2023), Rouen, France, Apr. 26–28.
20.
Goodwin, D. G., Moffat, H. K., Schoegl, I., Speth, R. L., and Weber, B. W.,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 3.0.0.https://www.cantera.org/
21.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al., 2024, “
GRI-Mech 3.0
,” accessed Nov. 6, 2024, http://www.me.berkeley.edu/gri_mech/
22.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Giorgetti
,
S.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
, 2016, “
Exhaust Gas Recirculation on Humidified Flexible Micro Gas Turbines for Carbon Capture Applications
,”
ASME
Paper No. GT2016-57265.10.1115/GT2016-57265
23.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Modeling of CO-Emissions for Gas Turbine Combustors Operating at Part-Load Conditions
,”
J. Global Power Propul. Soc.
,
2
, pp.
376
387
.10.22261/C3N5OA
24.
Savarese
,
M.
,
Cuoci
,
A.
,
De Paepe
,
W.
, and
Parente
,
A.
,
2023
, “
Machine Learning Clustering Algorithms for the Automatic Generation of Chemical Reactor Networks From CFD Simulations
,”
Fuel
,
343
, p.
127945
.10.1016/j.fuel.2023.127945
25.
Sun
,
Y.
,
Zhang
,
Y.
,
Huang
,
M.
,
Li
,
Q.
,
Wang
,
W.
,
Zhao
,
D.
,
Cheng
,
S.
, et al.,
2022
, “
Effect of Hydrogen Addition on the Combustion and Emission Characteristics of Methane Under Gas Turbine Relevant Operating Condition
,”
Fuel
,
324
, p.
124707
.10.1016/j.fuel.2022.124707
26.
İlbaş
,
M.
, and
Yılmaz
,
İ.
,
2012
, “
Experimental Analysis of the Effects of Hydrogen Addition on Methane Combustion
,”
Int. J. Energy Res.
,
36
(
5
), pp.
643
647
.10.1002/er.1822
27.
Cruccolini
,
V.
,
Discepoli
,
G.
,
Cimarello
,
A.
,
Battistoni
,
M.
,
Mariani
,
F.
,
Grimaldi
,
C. N.
, and
Dal Re
,
M.
,
2020
, “
Lean Combustion Analysis Using a Corona Discharge Igniter in an Optical Engine Fueled With Methane and a Hydrogen-Methane Blend
,”
Fuel
,
259
, p.
116290
.10.1016/j.fuel.2019.116290
28.
Cecere
,
D.
,
Carpenella
,
S.
,
Giacomazzi
,
E.
,
Stagni
,
A.
,
Di Nardo
,
A.
, and
Calchetti
,
G.
,
2024
, “
Effects of Hydrogen Blending and Exhaust Gas Recirculation on NOx Emissions in Laminar and Turbulent CH4/Air Flames at 25 bar
,”
Int. J. Hydrogen Energy
,
49
, pp.
1205
1222
.10.1016/j.ijhydene.2023.10.172
You do not currently have access to this content.