Abstract

Manufacturing processes and wear are known to create imperfections in mechanical components that may result in a significant deviation of the modal properties from their predicted values. This is especially true for periodic structures such as bladed disks, where even small variations in the blade geometry can cause mistuning. The effect of parameter variations on the model is commonly assessed through sensitivity analysis within the framework of uncertainty propagation or structural optimization. Different formulations are available when dealing with the variation of a single scalar parameter. The problem becomes more complicated when the source of the variation is the whole component geometry. To deal with this case, it is necessary to define a representation able to describe the shift from the nominal geometry through a finite set of parameters and compute the derivatives of the system matrices with respect to those parameters. This paper proposes to compute analytically the derivatives of the system matrices with respect to the geometric variations. The derivatives are calculated at the finite element (FE) level and are then assembled into global derivative matrices. Using directional derivatives, the sensitivities of the system matrices are computed with standard FE numerical schemes based on the nominal geometry.

References

1.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
2.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
3.
De Klerk
,
D.
,
Rixen
,
D. J.
, and
Voormeeren
,
S. N.
,
2008
, “
General Framework for Dynamic Substructuring: History, Review and Classification of Techniques
,”
AIAA J.
,
46
(
5
), pp.
1169
1181
.10.2514/1.33274
4.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
5.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach
, 124(4), pp.
597
605
10.1115/1.1508384.
6.
Tortorelli
,
D. A.
, and
Michaleris
,
P.
,
1994
, “
Design Sensitivity Analysis: Overview and Review
,”
Inverse Probl. Eng.
,
1
(
1
), pp.
71
105
.10.1080/174159794088027573
7.
Nelson
,
R. B.
,
1976
, “
Simplified Calculation of Eigenvector Derivatives
,”
AIAA J.
,
14
(
9
), pp.
1201
1205
.10.2514/3.7211
8.
Fox
,
R. L.
, and
Kapoor
,
M. P.
,
1968
, “
Rates of Change of Eigenvalues and Eigenvectors
,”
AIAA J.
,
6
(
12
), pp.
2426
2429
.10.2514/3.5008
9.
Lin
,
R. M.
,
Mottershead
,
J. E.
, and
Ng
,
T. Y.
,
2020
, “
A State-of-the-Art Review on Theory and Engineering Applications of Eigenvalue and Eigenvector Derivatives
,”
Mech. Syst. Signal Process.
,
138
, p.
106536
.10.1016/j.ymssp.2019.106536
10.
Friswell
,
M.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
, Vol. 38, Kluwer Academic Publishers, Dordrecht, The Netherlands.
11.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: Solid Mechanics
, Vol. 2,
Butterworth-Heinemann
,
Oxford, UK
.
12.
Taylor
,
R. L.
,
2000
,
The Finite Element Method: The Basis
,
Butterworth Heinemann
,
Oxford, UK
.
13.
Van Keulen
,
F.
, and
De Boer
,
H.
,
1998
, “
Rigorous Improvement of Semi-Analytical Design Sensitivities by Exact Differentiation of Rigid Body Motions
,”
Int. J. Numer. Methods Eng.
,
42
(
1
), pp.
71
91
.10.1002/(SICI)1097-0207(19980515)42:1<71::AID-NME350>3.0.CO;2-C
14.
Cheng
,
G.
,
Gu
,
Y.
, and
Zhou
,
Y.
,
1989
, “
Accuracy of Semi-Analytic Sensitivity Analysis
,”
Finite Elem. Anal. Des.
,
6
(
2
), pp.
113
128
.10.1016/0168-874X(89)90039-5
15.
Van Keulen
,
F.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2005
, “
Review of Options for Structural Design Sensitivity Analysis. Part 1: Linear Systems
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
30–33
), pp.
3213
3243
.10.1016/j.cma.2005.02.002
16.
Olhoff
,
N.
,
Rasmussen
,
J.
, and
Lund
,
E.
,
1993
, “
A Method of ‘Exact’ Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses
,”
J. Struct. Mech.
,
21
(
1
), pp.
1
66
.10.1080/08905459308905180
17.
Lund
,
E.
, and
Olhoff
,
N.
,
1994
, “
Shape Design Sensitivity Analysis of Eigenvalues Using ‘Exact’ Numerical Differentiation of Finite Element Matrices
,”
Struct. Optim.
,
8
(
1
), pp.
52
59
.10.1007/BF01742934
18.
Loève
,
M.
, and
Loève
,
M.
,
1977
,
Elementary Probability Theory
,
Springer
,
New York
.
19.
Ghiocel
,
D. M.
,
2001
, “
Stochastic Field Models for Aircraft Jet Engine Applications
,”
J. Aerosp. Eng.
,
14
(
4
), pp.
127
139
.10.1061/(ASCE)0893-1321(2001)14:4(127)
20.
Brown
,
J. M.
,
Slater
,
J.
, and
Grandhi
,
R. V.
,
2003
, “
Probabilistic Analysis of Geometric Uncertainty Effects on Blade Modal Response
,”
ASME
Paper No. GT2003-38557.10.1115/GT2003-38557
21.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
22.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.10.1115/1.4007783
23.
Lange
,
A.
,
Vogeler
,
K.
,
Gümmer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
ASME
Paper No. GT2009-59937.10.1115/GT2009-59937
24.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
25.
Carassale
,
L.
,
Bruzzone
,
S.
,
Cavicchi
,
A.
, and
Marrè Brunenghi
,
M.
,
2018
, “
Representation and Analysis of Geometric Uncertainties in Rotor Blades
,”
ASME
Paper No. GT2018-76385.10.1115/GT2018-76385
26.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
27.
Carassale
,
L.
,
Cavicchi
,
A.
,
Bruzzone
,
S.
, and
Marrè Brunenghi
,
M.
,
2019
, “
Probabilistic Response of a Bladed Disk With Uncertain Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101024
.10.1115/1.4044642
28.
Neudecker
,
H.
,
1969
, “
Some Theorems on Matrix Differentiation With Special Reference to Kronecker Matrix Products
,”
J. Am. Stat. Assoc.
,
64
(
327
), pp.
953
963
.10.1080/01621459.1969.10501027
29.
Bentler
,
P. M.
, and
Lee
,
S. Y.
,
1978
, “
Matrix Derivatives With Chain Rule and Rules for Simple, Hadamard, and Kronecker Products
,”
J. Math. Psychol.
,
17
(
3
), pp.
255
262
.10.1016/0022-2496(78)90020-2
30.
Brewer
,
J.
,
1978
, “
Kronecker Products and Matrix Calculus in System Theory
,”
IEEE Trans. Circuits Syst.
,
25
(
9
), pp.
772
781
.10.1109/TCS.1978.1084534
31.
Magnus
,
J. R.
, and
Neudecker
,
H.
,
1979
, “
The Commutation Matrix: Some Properties and Applications
,”
Ann. Stat.
,
7
(
2
), pp.
381
394
.10.1214/aos/1176344621
32.
Magnus
,
J. R.
, and
Neudecker
,
H.
,
1985
, “
Matrix Differential Calculus With Applications to Simple, Hadamard, and Kronecker Products
,”
J. Math. Psychol.
,
29
(
4
), pp.
474
492
.10.1016/0022-2496(85)90006-9
You do not currently have access to this content.