Abstract

This contribution focuses on the validation of a numerical strategy developed jointly by Safran and Polytechnique Montréal for the simulation and the analysis of blade-tip/casing contact interactions in low-pressure compressor stages. A large experimental campaign provided data (including strain measurements on the blade and abradable coating wear profiles) for several contact configurations involving four distinct blades and one type of abradable coating. The numerical strategy is here improved by introducing a new cutoff criterion to ensure the physical relevance of the presented results, specifically by keeping the maximum stress within the blade below the material's yield stress. Similarly to previous publications involving a single contact configuration, the numerical model is first calibrated for one of the four blades of interest. It is seen that the results using the numerical model—critical speed, relative wear depth between leading edge (LE) and trailing edge (TE), and maximum stress levels within the blade—are in good agreement with the experimental observations. Using the same calibration, numerical simulations are then blindly run for the three other blades. The results demonstrate that numerically predicted key quantities align well with experimental data. Additionally, the numerical model provides an accurate relative assessment of a blade's sensitivity to contact in agreement with experimental observations. This paper thus presents the first blind validation of a numerical strategy dedicated to blade-tip/casing contact interactions. Simultaneously, it also demonstrates that this model may be considered for the early discrimination of blade profiles depending on their sensitivity to contact.

References

1.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade–Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
.10.1007/s11071-015-2535-x
2.
Agrapart
,
Q.
,
Nyssen
,
F.
,
Lavazec
,
D.
,
Dufrénoy
,
P.
, and
Batailly
,
A.
,
2019
, “
Multi-Physics Numerical Simulation of an Experimentally Predicted Rubbing Event in Aircraft Engines
,”
J. Sound Vib.
,
460
, p.
114869
.10.1016/j.jsv.2019.114869
3.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J.-Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2017
, “
Tribological Characterization of a Labyrinth-Abradable Interaction in a Turbo Engine Application
,”
Wear
,
370–371
, pp.
29
38
.10.1016/j.wear.2016.11.007
4.
Michael
,
W.
, and
Matthew
,
M.
,
2018
, “
Wear Mechanisms at the Blade Tip Seal Interface
,”
Wear
,
404–405
, pp.
176
193
.10.1016/j.wear.2018.03.009
5.
Mandard
,
R.
,
Witz
,
J.-F.
,
Boidin
,
X.
,
Fabis
,
J.
,
Desplanques
,
Y.
, and
Meriaux
,
J.
,
2015
, “
Interacting Force Estimation During Blade/Seal Rubs
,”
Tribol. Int.
,
82
, pp.
504
513
.10.1016/j.triboint.2014.01.026
6.
Tang
,
N.
,
Zhang
,
B.
,
Lord
,
C.
, and
Marshall
,
M.
,
2020
, “
Identification of Blade Operational Mode Shapes During Wear of Abradable Coating
,”
J. Sound Vib.
,
472
, p.
115204
.10.1016/j.jsv.2020.115204
7.
Zhang
,
B.
, and
Marshall
,
M.
,
2019
, “
Investigating Material Removal Mechanism of Al-Si Base Abradable Coating in Labyrinth Seal System
,”
Wear
,
426–427
, pp.
239
249
.10.1016/j.wear.2019.01.034
8.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of the High Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbo-Engine Application
,”
Wear
,
316
(
1–2
), pp.
109
118
.10.1016/j.wear.2014.04.023
9.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrenoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2010
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
10.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
11.
Pacyna
,
L.
,
Bertret
,
A.
,
Derclaye
,
A.
,
Papeleux
,
L.
, and
Ponthot
,
J.-P.
,
2020
, “
Implementation of a Rig Test for Rotor/Stator Interaction of Low-Pressure Compressor Blades and Comparison of Experimental Results With Numerical Model
,”
ASME
Paper No. GT2020-14266.10.1115/GT2020-14266
12.
Lesaffre
,
N.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2007
, “
Contact Analysis of a Flexible Bladed-Rotor
,”
Eur. J. Mech. - A/Solids
,
26
(
3
), pp.
541
557
.10.1016/j.euromechsol.2006.11.002
13.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1–2
), pp.
366
391
.10.1016/j.jsv.2008.06.019
14.
Legrand
,
M.
,
Batailly
,
A.
,
Magnain
,
B.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2012
, “
Full Three-Dimensional Investigation of Structural Contact Interactions in Turbomachines
,”
J. Sound Vib.
,
331
(
11
), pp.
2578
2601
.10.1016/j.jsv.2012.01.017
15.
Legrand
,
M.
, and
Pierre
,
C.
,
2010
, “
Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law: Application to Aircraft Engines
,”
ASME
Paper No. DETC2009-87669.10.1115/DETC2009-87669
16.
Williams
,
R. J.
,
2012
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
17.
Nyssen
,
F.
, and
Batailly
,
A.
,
2020
, “
Sensitivity Analysis of Rotor/Stator Interactions Accounting for Wear and Thermal Effects Within Low- and High-Pressure Compressor Stages
,”
Coatings
,
10
(
1
), p.
74
.10.3390/coatings10010074
18.
Nyssen
,
F.
,
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2022
, “
Numerical Investigation of a Mistuned Industrial Bladed Disk Dynamics With Structural Contacts Using Time and Frequency Methods
,”
J. Sound Vib.
,
535
, p.
117077
.10.1016/j.jsv.2022.117077
19.
Delhez
,
E.
,
Nyssen
,
F.
,
Golinval
,
J.-C.
, and
Batailly
,
A.
,
2021
, “
Assessment of Geometric Nonlinearities Influence on NASA Rotor 37 Response to Blade Tip/Casing Rubbing Events
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111022
.10.1115/1.4051968
20.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
,
1991
, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
,
32
(
1
), pp.
103
128
.10.1002/nme.1620320107
21.
Colaïtis
,
Y.
,
2021
, “
Stratégie numérique pour l'analyse qualitative des interactions aube/carter
,” Ph.D. thesis,
Polytechnique Montreal
,
QC, Canada
.
22.
Vadcard
,
T.
,
Thouverez
,
F.
, and
Batailly
,
A.
,
2024
, “
On the Detection of Nonlinear Normal Mode-Related Isolated Branches of Periodic Solutions for High-Dimensional Nonlinear Mechanical Systems With Frictionless Contact Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
419
, p.
116641
.10.1016/j.cma.2023.116641
23.
Nitschke
,
S.
,
Wollmann
,
T.
,
Ebert
,
C.
,
Behnisch
,
T.
,
Langkamp
,
A.
,
Lang
,
T.
,
Johann
,
E.
, and
Gude
,
M.
,
2019
, “
An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions Under Engine-Like Mechanical Conditions
,”
Wear
,
422–423
, pp.
161
166
.10.1016/j.wear.2018.12.072
24.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Localized on a Single Blade Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.10.1016/j.jsv.2016.03.016
25.
Millecamps
,
A.
,
Batailly
,
A.
,
Legrand
,
M.
, and
Garcin
,
F.
,
2015
, “
Snecma's Viewpoint on the Numerical and Experimental Simulation of Blade-Tip/Casing Unilateral Contacts
,”
ASME
Paper No. GT2015-42682.10.1115/GT2015-42682
26.
Nyssen
,
F.
,
Tableau
,
N.
,
Lavazec
,
D.
, and
Batailly
,
A.
,
2020
, “
Experimental and Numerical Characterization of a Ceramic Matrix Composite Shroud Segment Under Impact Loading
,”
J. Sound Vib.
,
467
, p.
115040
.10.1016/j.jsv.2019.115040
27.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2012
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.10.1115/1.4004951
28.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
29.
Sternchüss
,
A.
, and
Balmès
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disks With Variable Rotation Speeds
,”
Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering
, Leuven, Belgium, Volume 7, pp.
3925
3939
.https://hal.science/hal-00266394/document
You do not currently have access to this content.