Abstract

In this study, strain energy density (SED) is employed as a creep damage parameter to calibrate the Wilshire-Cano-Stewart (WCS) model. The WCS model is an adaptation of the Wilshire equations combined with continuum damage mechanics to enable predictions of creep deformation and damage. In WCS, the analytical calibration methods for the Wilshire equations remain unchanged and the additional damage parameters are found using numerical optimization. Though the WCS model can accurately predict progressive creep deformation, the damage remains phenomenological. Herein, damage is represented as SED. In SED, it is assumed that a material system has a finite amount of energy per unit volume that can be dissipated before failure. Assuming that SED is caused by the accumulation of microstructural defects, the damage process is represented as a scalar value from zero (undamaged) to unity (rupture). By combining the WCS model with SED, damage evolution is pinned physically and can be measured experimentally. Stress rupture, minimum-creep-strain-rate, and creep deformation data are gathered for alloy P91 at 600 °C and stresses from 100 to 200 MPa. The Wilshire constants are analytically determined and compared with the literature. The damage-trajectory constant is calibrated using SED measurements. The new calibration accurately predicts the material response across the range of stresses and temperatures. A comparison between numerical optimization and measured damage-trajectory constants is performed. Parametric simulations verify the interpolation and extrapolation capabilities of this new approach.

References

1.
Takeishi
,
K.
,
2022
, “
Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend Toward Carbon Neutrality
,”
Energies
,
15
(
23
), p.
8935
.10.3390/en15238935
2.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2021
, “
A Continuum Damage Mechanics (CDM) Based Wilshire Model for Creep Deformation, Damage, and Rupture Prediction
,”
Mater. Sci. Eng.: A
,
799
, p.
140231
.10.1016/j.msea.2020.140231
3.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2023
, “
Probabilistic Creep With the Wilshire–Cano–Stewart Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
46
(
10
), pp.
4001
4019
.10.1111/ffe.14120
4.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2022
, “
Accelerated Creep Test Qualification of Creep-Resistance Using the Wilshire–Cano–Stewart Constitutive Model and Stepped Isostress Method
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011016
.10.1115/1.4052205
5.
Hossain
,
M. A.
,
Pellicotte
,
J. T.
, and
Stewart
,
C. M.
,
2023
, “
A Calibration Approach for Accelerated Creep Testing for Electron Beam Melted Ti-6Al-4V Using the Wilshire–Cano–Stewart Model
,”
ASME J. Eng. Gas Turbines Power
,
145
(
11
), p.
111013
.10.1115/1.4063310
6.
Haque
,
M. S.
,
2015
,
An Improved Sin-Hyperbolic Constitutive Model for Creep Deformation and Damage
,
The University of Texas at El Paso
, El Paso, TX.
7.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Finite-Element Analysis of Waspaloy Using Sinh Creep-Damage Constitutive Model Under Triaxial Stress State
,”
ASME J. Pressure Vessel Technol.
,
138
(
3
), p.
031408
.10.1115/1.4032704
8.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Modeling the Creep Deformation, Damage, and Rupture of Hastelloy X Using MPC Omega, Theta, and Sin-Hyperbolic Models
,”
ASME
Paper No. PVP2016-63029.10.1115/PVP2016-63029
9.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2017
, “
The Stress-Sensitivity, Mesh-Dependence, and Convergence of Continuum Damage Mechanics Models for Creep
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041403
.10.1115/1.4036142
10.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2007
, “
Long-Term Creep Life Prediction for a High Chromium Steel
,”
Scr. Mater.
,
56
(
8
), pp.
701
704
.10.1016/j.scriptamat.2006.12.033
11.
Payten
,
W. M.
,
Dean
,
D. W.
, and
Snowden
,
K. U.
,
2010
, “
A Strain Energy Density Method for the Prediction of Creep–Fatigue Damage in High Temperature Components
,”
Mater. Sci. Eng.: A
,
527
(
7–8
), pp.
1920
1925
.10.1016/j.msea.2009.11.028
12.
Skelton
,
R. P.
,
2013
, “
The Energy Density Exhaustion Method for Assessing the Creep-Fatigue Lives of Specimens and Components
,”
Mater. High Temp.
,
30
(
3
), pp.
183
201
.10.3184/096034013X13757890932442
13.
Takahashi
,
Y.
,
Dogan
,
B.
, and
Gandy
,
D.
,
2013
, “
Systematic Evaluation of Creep-Fatigue Life Prediction Methods for Various Alloys
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061204
.10.1115/1.4024436
14.
Douzian
,
G.
,
Muránsky
,
O.
,
Kruzic
,
J. J.
,
Wright
,
R. N.
, and
Payten
,
W.
,
2020
, “
Assessment of Modelling Methodologies for Prediction of High-Temperature Creep-Fatigue Behaviour of Alloy 617
,”
Int. J. Pressure Vessels Piping
,
187
, p.
104150
.10.1016/j.ijpvp.2020.104150
15.
Walczak
,
J.
,
1986
, “
On an Energy Creep-Rupture Criterion
,”
Int. J. Mech. Sci.
,
28
(
2
), pp.
71
81
.10.1016/0020-7403(86)90015-9
16.
Ng
,
L.
, and
Zarrabi
,
K.
,
2008
, “
On Creep Failure of Notched Bars
,”
Eng. Failure Anal.
,
15
(
6
), pp.
774
786
.10.1016/j.engfailanal.2007.06.011
17.
Zarrabi
,
K.
, and
Ng
,
L.
,
2008
, “
A Novel and Simple Approach for Predicting Creep Life Based on Tertiary Creep Behavior
,”
ASME J. Pressure Vessel Technol.,
130(4), p.
041201
.10.1115/1.2967879
18.
Kan
,
K.
,
Muránsky
,
O.
,
Bendeich
,
P. J.
,
Wright
,
R. N.
,
Kruzic
,
J. J.
, and
Payten
,
W.
,
2019
, “
Assessment of Creep Damage Models in the Prediction of High-Temperature Creep Behaviour of Alloy 617
,”
Int. J. Pressure Vessels Piping
,
177
, p.
103974
.10.1016/j.ijpvp.2019.103974
19.
Pellicotte
,
J.
,
Hossain
,
M. A.
,
Egan
,
A. J.
,
Mills
,
M. J.
, and
Stewart
,
C. M.
,
2024
, “
Rapid Screening of Creep Resistance in Additive Manufactured Ti-6Al-4V Alloy
,”
Mater. Sci. Eng.: A
,
913
, p.
146999
.10.1016/j.msea.2024.146999
20.
Guguloth
,
K.
, and
Roy
,
N.
,
2017
, “
Creep Deformation Behavior of 9Cr1MoVNb (ASME Grade 91) Steel
,”
Mater. Sci. Eng.: A
,
680
, pp.
388
404
.10.1016/j.msea.2016.10.112
21.
Kimura
,
K.
,
Kushima
,
H.
, and
Sawada
,
K. J. M. S.
,
2009
, “
Long-Term Creep Deformation Property of Modified 9Cr–1Mo Steel
,”
Mater. Sci. Eng.: A
,
510–511
, pp.
58
63
.10.1016/j.msea.2008.04.095
22.
Gray
,
V.
, and
Whittaker
,
M.
,
2015
, “
The Changing Constants of Creep: A Letter on Region Splitting in Creep Lifing
,”
Mater. Sci. Eng.: A
,
632
, pp.
96
102
.10.1016/j.msea.2015.02.059
23.
Bernstein
,
I. M.
,
1967
,
Diffusion Creep In Zirconium And Certain Zirconium Alloys
,
US Steel Corp
,
Monroeville, PA
.
24.
Foldyna
,
V.
,
Kubon
,
Z.
,
Filip
,
M.
,
Mayer
,
K. H.
, and
Berger
,
C.
,
1996
, “
Evaluation of Structural Stability and Creep Resistance of 9‐12% Cr Steels
,”
Steel Res.
,
67
(
9
), pp.
375
381
.10.1002/srin.199605504
25.
Kimura
,
K.
,
2013
, “
Creep Rupture Strength Evaluation With Region Splitting by Half Yield
,”
ASME
Paper No. PVP2013-97819.10.1115/PVP2013-97819
26.
Armaki
,
H. G.
,
Chen
,
R.
,
Maruyama
,
K.
, and
Igarashi
,
M.
,
2010
, “
Premature Creep Failure in Strength Enhanced High Cr Ferritic Steels Caused by Static Recovery of Tempered Martensite Lath Structures
,”
Mater. Sci. Eng.: A
,
527
(
24–25
), pp.
6581
6588
.10.1016/j.msea.2010.07.037
27.
Whittaker
,
M. T.
,
Evans
,
M.
, and
Wilshire
,
B.
,
2012
, “
Long-Term Creep Data Prediction for Type 316H Stainless Steel
,”
Mater. Sci. Eng.: A
,
552
, pp.
145
150
.10.1016/j.msea.2012.05.023
28.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2012
, “
Strain and Damage-Based Analytical Methods to Determine the Kachanov–Rabotnov Tertiary Creep-Damage Constants
,”
Int. J. Damage Mech.
,
21
(
8
), pp.
1186
1201
.10.1177/1056789511430519
You do not currently have access to this content.