Abstract

A compressor usually contains multiple blade rows, and its uncertainty dimensionality grows proportionally with the number of blade rows, leading to a rapid increase in required sample size for uncertainty quantification analysis. This paper proposes a new model decomposition method based on inter-blade decoupling, by analyzing uncertainty propagation in compressors. Traditionally, a surrogate model with uncertainty variables of all blade rows as input is directly established and the dimensionality is high. To solve this problem, this study decomposes the compressor domain into subdomains, each containing one blade row. For each subdomain, a submodel introduces aerodynamic uncertainties at the interfaces connecting different subdomains. The dimensionality of a submodel is roughly equal to the uncertainty factors in a single row, significantly reducing the required sample size. The uncertainties in the rotor and stator blade rows of a one-stage compressor are investigated to verify this method. Using principal component analysis and machine learning, the projection amplitudes of the interface aerodynamic flow field onto the principal modes are extracted, and submodels are established. Results show that the original 25-dimensional model can be decoupled into a 13-dimensional submodel for the rotor and a 16-dimensional submodel for the stator, reducing the required sample size from 600 to 90 with similar accuracy. This model decomposition method greatly reduces the cost of predicting compressor performance with uncertainty, laying a foundation for comprehensive analysis and effective control of uncertainty factors in engineering applications.

References

1.
Ju
,
Y.
,
Liu
,
Y.
,
Jiang
,
W.
, and
Zhang
,
C.
,
2021
, “
Aerodynamic Analysis and Design Optimization of a Centrifugal Compressor Impeller Considering Realistic Manufacturing Uncertainties
,”
Aerosp. Sci. Technol.
,
115
, p.
106787
.10.1016/j.ast.2021.106787
2.
Wang
,
J.
, and
Zheng
,
X.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
, p.
070801
.10.1115/1.4047179
3.
Kumar
,
A.
,
2006
, “
Robust Design Methodologies: Application to Compressor Blades
,”
Ph.D. thesis
,
University of Southampton
,
Southampton, UK
.https://eprints.soton.ac.uk/72037/
4.
Kumar
,
A.
,
Keane
,
A. J.
,
Nair
,
P. B.
, and
Shahpar
,
S.
,
2006
, “
Robust Design of Compressor Fan Blades Against Erosion
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
864
873
.10.1115/1.2202886
5.
Kumar
,
A.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2008
, “
Robust Design Using Bayesian Monte Carlo
,”
Int. J. Numer. Methods Eng.
,
73
(
11
), pp.
1497
1517
.10.1002/nme.2126
6.
Giebmanns
,
A.
,
Schnell
,
R.
,
Steinert
,
W.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Werner-Spatz
,
C.
,
2012
, “
Analyzing and Optimizing Geometrically Degraded Transonic Fan Blades by Means of 2D and 3D Simulations and Cascade Measurements
,”
ASME
Paper No. GT2012-69064.10.1115/GT2012-69064
7.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
, Harlow, Essex, UK.
8.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
219
241
.10.1007/s00158-009-0420-2
9.
Nobile
,
F.
,
Tempone
,
R.
, and
Webster
,
C. G.
,
2008
, “
A Sparse Grid Stochastic Collocation Method for Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
46
(
5
), pp.
2309
2345
.10.1137/060663660
10.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.10.1016/j.ast.2021.106893
11.
Panizza
,
A.
,
Valente
,
R.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2016
, “
Impact of Manufacturing Variability on the Aerodynamic Performance of a Centrifugal Compressor Stage With Curvilinear Blades
,”
ASME
Paper No. GT2016-5779110.1115/GT2016-57791.
12.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.10.1080/00401706.1987.10488205
13.
Garzon
,
V. E.
,
2003
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://acdl.mit.edu/garzon_thesis.pdf
14.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2011
, “
An Integrated System for the Aerodynamic Design of Compression Systems—Part I: Development
,”
ASME J. Turbomach.
,
133
(
1
), p.
011011
.10.1115/1.4000534
15.
Kapsalis
,
S.
,
Panagiotou
,
P.
, and
Yakinthos
,
K.
,
2021
, “
CFD-Aided Optimization of a Tactical Blended-Wing-Body UAV Platform Using the Taguchi Method
,”
Aerosp. Sci. Technol.
,
108
, p.
106395
.10.1016/j.ast.2020.106395
16.
Ribeiro
,
M. T.
,
Singh
,
S.
, and
Guestrin
,
C.
,
2016
, “
Model-Agnostic Interpretability of Machine Learning
,” arXiv Preprint
arXiv:1606.05386
.10.48550/arXiv.1606.05386
17.
Wang
,
J.
,
He
,
X.
,
Wang
,
B.
, and
Zheng
,
X.
,
2022
, “
Shapley Additive Explanations of Multi-Geometrical Variable Coupling Effect in Transonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041015
.10.1115/1.4053322
18.
Constantine
,
P. G.
,
2015
,
Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
19.
Abidin
,
Z.
,
Almbauer
,
R.
,
Burgstaller
,
A.
, and
Nagy
,
D.
,
2006
, “
Domain Decomposition Method for 3-Dimensional Simulation of the Piston Cylinder Section of a Hermetic Reciprocating Compressor
,”
International Compressor Engineering Conference
, Purdue, West Lafayette, IN, July 17–20, Paper No. C078.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2792&context=icec
20.
An
,
G.
,
Kang
,
J.
,
Wang
,
L.
,
Zhang
,
L.
,
Lang
,
J.
, and
Li
,
H.
,
2023
, “
Decoupling and Reconstruction Analysis in a Transonic Axial Compressor Using the Dynamic Mode Decomposition Method
,”
Phys. Fluids
,
35
(
8
), p.
084120
.10.1063/5.0160392
21.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112601
.10.1115/1.4007167
22.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.10.1016/j.paerosci.2017.05.003
23.
Wang
,
J.
,
Wang
,
B.
,
Yang
,
H.
,
Sun
,
Z.
,
Zhou
,
K.
, and
Zheng
,
X.
,
2023
, “
Compressor Geometric Uncertainty Quantification Under Conditions From Near Choke to Near Stall
,”
Chin. J. Aeronaut.
,
36
(
3
), pp.
16
29
.10.1016/j.cja.2022.10.012
24.
Massoudi
,
S.
,
Picard
,
C.
, and
Schiffmann
,
J.
,
2022
, “
Robust Design Using Multiobjective Optimisation and Artificial Neural Networks With Application to a Heat Pump Radial Compressor
,”
Des. Sci.
,
8
, p.
e1
.10.1017/dsj.2021.25
25.
Cheng
,
H.
,
Zhou
,
C.
,
Lu
,
X.
,
Zhao
,
S.
,
Han
,
G.
, and
Yang
,
C.
,
2023
, “
Robust Aerodynamic Optimization and Design Exploration of a Wide-Chord Transonic Fan Under Geometric and Operational Uncertainties
,”
Energy
,
278
, p.
128011
.10.1016/j.energy.2023.128011
26.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-439.10.2514/6.92-439
27.
Sallee
,
G. P.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data JT9D Jet Engine Diagnostics Program
,”
NASA Lewis Research Center
,
Cleveland, OH
, Technical Report No.
NASA CR-135448
.https://ntrs.nasa.gov/citations/19800013837
28.
Dundas
,
R. E.
,
1986
, “
A Study of the Effect of Deterioration on Compressor Surge Margin in Constant-Speed, Single-Shaft Gas Turbine Engines
,”
ASME
Paper No. 86-GT-177.10.1115/86-GT-177
29.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME
Paper No. GT2003-38130.10.1115/GT2003-38130
30.
Preisendorfer
,
R. W.
, and
Mobley
,
C. D.
,
1988
,
Principal Component Analysis in Meteorology and Oceanography
(
Developments in Atmospheric Science
, Vol.
17
), Elsevier Science, Amsterdam, The Netherlands.
31.
Jolliffe
,
I. T.
,
1986
, “
Principal Components in Regression Analysis
,”
Principal Component Analysis
,
Springer
,
New York
, pp.
129
155
.
32.
Trefethen
,
L. N.
, and
Bau
,
D.
III
,
1997
,
Numerical Linear Algebra
,
Siam
, Philadelphia, PA.
33.
Freni
,
G.
,
Mannina
,
G.
, and
Viviani
,
G.
,
2010
, “
Uncertainty Propagation Throughout an Integrated Water-Quality Model
,”
Proceedings of the 5th International Congress on Environmental Modelling and Software
,
Ottawa, ON, Canada
, July, Paper No. 237.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2588&context=iemssconference&httpsredir=1&referer=
You do not currently have access to this content.