Abstract

Advanced Brayton cycle-based waste heat recovery (WHR) system for a targeted energy efficiency of 20–50% and gravimetric power densities of 1.6–1.9 kW/kg are attractive propositions for future airplane designs. One of the critical challenges for the maturation of these technologies is the need to achieve highly compact heat exchangers (HX) capable of operation under extreme pressure and temperature environments. The current work presents computational fluid dynamics (CFD) modeling strategies for the design and development of additively manufactured extreme environment heat exchangers (EEHX). Modeling and simulation-driven design improvements to the HX are implemented to achieve a power density of 15 kW/kg under the extreme environment of 800 °C inlet temperature and 80 bar pressure with supercritical CO2 as the working fluid. Various CFD-based modeling methods are described, starting from selecting, rating, and sizing heat transfer (HT) surfaces, followed by detailed core modeling through periodic and end-section models. Further, a novel porous media-based modeling approach with a high-fidelity manifold model is implemented to generate optimal manifold profiles while minimizing flow maldistribution through the core. Comprehensive physical testing of the additively manufactured heat exchanger prototypes has been used to validate the developed numerical models within 5–10% of pressure drop and heat transfer predictions.

References

1.
Sehra
,
A. K.
, and
Whitlow
,
W.
,
2004
, “
Propulsion and Power for 21st Century Aviation
,”
Prog. Aerosp. Sci.
,
40
(
4–5
), pp.
199
235
.10.1016/j.paerosci.2004.06.003
2.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.10.1016/j.apenergy.2017.02.048
3.
Vesely
,
L.
,
Kapat
,
J.
,
Bringhenti
,
C.
,
Tomita
,
J. T.
,
Stoia
,
M.
, and
Jui
,
K.
,
2022
, “
sCO2 Waste Heat Recovery System for Aircraft Engines
,”
AIAA
Paper No. 2022-1407.10.2514/6.2022-1407
4.
Jacob
,
F.
,
Rolt
,
A. M.
,
Sebastiampillai
,
J. M.
,
Sethi
,
V.
,
Belmonte
,
M.
, and
Cobas
,
P.
,
2017
, “
Performance of a Supercritical CO2 Bottoming Cycle for Aero Applications
,”
Appl. Sci.
,
7
(
3
), p.
255
.10.3390/app7030255
5.
Carcasci
,
C.
,
Costanzi
,
F.
, and
Pacifici
,
B.
,
2014
, “
Performance Analysis in Off-Design Condition of Gas Turbine Air-Bottoming Combined System
,”
Energy Proc.
,
45
, pp.
1037
1046
.10.1016/j.egypro.2014.01.109
6.
Kalra
,
C.
,
Hofer
,
D.
,
Sevincer
,
E.
,
Moore
,
J.
, and
Brun
,
K.
,
2014
, “
Development of High Efficiency Hot Gas Turbo-Expander for Optimized CSP Supercritical CO2 Power Block Operation
,”
The 4th International Symposium-Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10, pp.
1
11
.http://sco2symposium.com/papers2014/turbomachinery/74-Kalra.pdf
7.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
8.
Ishiyama
,
S.
,
Muto
,
Y.
,
Kato
,
Y.
,
Nishio
,
S.
,
Hayashi
,
T.
, and
Nomoto
,
Y.
,
2008
, “
Study of Steam, Helium and Supercritical CO2 Turbine Power Generations in Prototype Fusion Power Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
325
332
.10.1016/j.pnucene.2007.11.078
9.
Stoia
,
M. F.
,
Ek
,
G. W.
,
Bowcutt
,
K. G.
, and
Needels
,
J. T.
,
2021
, “
Integrated Power and Thermal Management System for High-Speed Aircraft
,”
AIAA
Paper No. 2021-3531.10.2514/6.2021-3531
10.
Polyakov
,
A. F.
,
1991
, “
Heat Transfer Under Supercritical Pressures
,”
Advances in Heat Transfer
, Vol.
21C
, Academic Press, San Diego, CA, pp.
1
53
.10.1016/S0065-2717(08)70333-2
11.
Angelino
,
G.
, and
Invernizzi
,
C. M.
,
2009
, “
Carbon Dioxide Power Cycles Using Liquid Natural Gas as Heat Sink
,”
Appl. Therm. Eng.
,
29
, pp.
2935
2941
.10.1016/j.applthermaleng.2009.03.003
12.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Bashir
,
M. H.
,
Khan
,
A. R.
,
Ahmad
,
K. N.
, and
Khan
,
S.
,
2012
, “
CFD Applications in Various Heat Exchangers Design: A Review
,”
Appl. Therm. Eng.
,
32
, pp.
1
12
.10.1016/j.applthermaleng.2011.09.001
13.
Sundén
,
B.
,
2007
, “
Computational Fluid Dynamics in Research and Design of Heat Exchangers
,”
Heat Transfer Eng.
,
28
(
11
), pp.
898
910
.10.1080/01457630701421679
14.
Galeazzo
,
F. C. C.
,
Miura
,
R. Y.
,
Gut
,
J. A. W.
, and
Tadini
,
C. C.
,
2006
, “
Experimental and Numerical Heat Transfer in a Plate Heat Exchanger
,”
Chem. Eng. Sci.
,
61
(
21
), pp.
7133
7138
.10.1016/j.ces.2006.07.029
15.
Bilirgen
,
H.
,
Dunbar
,
S.
, and
Levy
,
E. K.
,
2013
, “
Numerical Modeling of Finned Heat Exchangers
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
278
288
.10.1016/j.applthermaleng.2013.08.002
16.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
,
Al-Hajri
,
E.
, and
Ohadi
,
M. M.
,
2015
, “
Numerical Modeling and Thermal Optimization of a Single-Phase Flow Manifold-Microchannel Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
81
, pp.
478
489
.10.1016/j.ijheatmasstransfer.2014.10.022
17.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Vijayan
,
P. K.
, and
Bhoi
,
R.
,
2008
, “
Experimental and CFD Estimation of Heat Transfer in Helically Coiled Heat Exchangers
,”
Chem. Eng. Res. Des.
,
86
(
3
), pp.
221
232
.10.1016/j.cherd.2007.10.021
18.
Ladeinde
,
F.
,
Muley
,
A.
,
Stoia
,
M.
,
Ek
,
G.
,
Alabi
,
K.
, and
Li
,
W.
,
2022
, “
Experimental Measurements and Mathematical Modeling of Cold Plate for Aviation Thermal Management
,”
Int. J. Heat Mass Transfer
,
191
, p.
122810
.10.1016/j.ijheatmasstransfer.2022.122810
19.
Pandey
,
V.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2020
, “
Thermo-Hydraulic Analysis of Compact Heat Exchanger for a Simple Recuperated SCO2 Brayton Cycle
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110091
.10.1016/j.rser.2020.110091
20.
Marchionni
,
M.
,
Chai
,
L.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2019
, “
Numerical Modelling and Transient Analysis of a Printed Circuit Heat Exchanger Used as Recuperator for Supercritical CO2 Heat to Power Conversion Systems
,”
Appl. Therm. Eng.
,
161
, p.
114190
.10.1016/j.applthermaleng.2019.114190
21.
Starace
,
G.
,
Fiorentino
,
M.
,
Longo
,
M. P.
, and
Carluccio
,
E.
,
2017
, “
A Hybrid Method for the Cross Flow Compact Heat Exchangers Design
,”
Appl. Therm. Eng.
,
111
, pp.
1129
1142
.10.1016/j.applthermaleng.2016.10.018
22.
Huang
,
L.
,
Lee
,
M. S.
,
Saleh
,
K.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2014
, “
A Computational Fluid Dynamics and Effectiveness-NTU Based Co-Simulation Approach for Flow Mal-Distribution Analysis in Microchannel Heat Exchanger Headers
,”
Appl. Therm. Eng.
,
65
, p.
447
.10.1016/j.applthermaleng.2014.01.046
23.
Jiang
,
H.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2006
, “
CoilDesigner: A General-Purpose Simulation and Design Tool for Air-to-Refrigerant Heat Exchangers
,”
Int. J. Refrig.
,
29
(
4
), pp.
601
610
.10.1016/j.ijrefrig.2005.09.019
24.
Zhang
,
Z.
, and
Li
,
Y. Z.
,
2003
, “
CFD Simulation on Inlet Configuration of Plate-Fin Heat Exchangers
,”
Cryogenics
,
43
(
12
), pp.
673
678
.10.1016/S0011-2275(03)00179-6
25.
Siddiqui
,
O. K.
, and
Zubair
,
S. M.
,
2017
, “
Efficient Energy Utilization Through Proper Design of Microchannel Heat Exchanger Manifolds: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
969
1002
.10.1016/j.rser.2017.01.074
26.
Sheik Ismail
,
L.
,
Ranganayakulu
,
C.
, and
Shah
,
R. K.
,
2009
, “
Numerical Study of Flow Patterns of Compact Plate-Fin Heat Exchangers and Generation of Design Data for Offset and Wavy Fins
,”
Int. J. Heat Mass Transfer
,
52
, p.
3972
.10.1016/j.ijheatmasstransfer.2009.03.026
27.
Richter do Nascimento
,
C. A.
,
Mariani
,
V. C.
,
Coelho
,
L.
, and
Dos
,
S.
,
2020
, “
Integrative Numerical Modeling and Thermodynamic Optimal Design of Counter-Flow Plate-Fin Heat Exchanger Applying Neural Networks
,”
Int. J. Heat Mass Transfer
,
159
, p.
120097
.10.1016/j.ijheatmasstransfer.2020.120097
28.
McDonough
,
J. R.
,
2020
, “
A Perspective on the Current and Future Roles of Additive Manufacturing in Process Engineering, With an Emphasis on Heat Transfer
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100594
.10.1016/j.tsep.2020.100594
29.
Thole
,
K. A.
,
Lynch
,
S. P.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Advances in Heat Transfer
,
Academic Press
, San Diego, CA, Vol. 53, pp.
249
325
.10.1016/bs.aiht.2021.06.004
30.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.10.1016/j.ijheatmasstransfer.2021.121600
31.
Shi
,
D.
,
Lin
,
K. T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
2
), p.
021901
.10.1115/1.4048921
32.
Shi
,
D.
,
Lin
,
K. T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2022
, “
Role of Three-Dimensional Swirl in Forced Convection Heat Transfer Enhancement in Wavy-Plate-Fin Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
5
), p.
052001
.10.1115/1.4053456
33.
Duggirala
,
V.
,
Reddy
,
V.
,
Muley
,
A.
,
Stoia
,
M.
, and
Ek
,
G.
,
2021
, “
Parametric Evaluation of AM Enabled Sinusoidal Heat Transfer Surfaces Through Numerical Simulations
,”
ASME
Paper No. IMECE2021-69552.10.1115/IMECE2021-69552
34.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
35.
Ladeinde
,
F.
,
Alabi
,
K.
, and
Li
,
W.
,
2018
, “
A Smart Software Tool for Aviation Heat Exchanger Analysis and Optimization
,”
AIAA
Paper No. 2018-4885.10.2514/6.2018-4885
36.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP Version 9.1
,
National Standard Reference Data Series (NIST NSRDS), National Institute of Standards and Technology
,
Gaithersburg, MD
.
37.
Missirlis
,
D.
,
Donnerhack
,
S.
,
Seite
,
O.
,
Albanakis
,
C.
,
Sideridis
,
A.
,
Yakinthos
,
K.
, and
Goulas
,
A.
,
2010
, “
Numerical Development of a Heat Transfer and Pressure Drop Porosity Model for a Heat Exchanger for Aero Engine Applications
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1341
1350
.10.1016/j.applthermaleng.2010.02.021
38.
Bajura
,
R. A.
, and
Jones
,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluids Eng., Trans. ASME
,
98
(
4
), pp.
654
665
.10.1115/1.3448441
39.
Wang
,
J.
, and
Wang
,
H.
,
2015
, “
Discrete Method for Design of Flow Distribution in Manifolds
,”
Appl. Therm. Eng.
,
89
, pp.
927
945
.10.1016/j.applthermaleng.2015.06.069
You do not currently have access to this content.