Abstract

The transition to a decarbonized energy future relies on identifying the most suitable alternative fuels that can meet the needs of various energy sectors. While both ammonia and hydrogen are zero-carbon energy vectors, their physical properties and burning characteristics sit on either side of that of natural gas. Hence, mixtures of ammonia and hydrogen are being increasingly looked at as having the potential to fuel current energy systems without requiring significant combustor redesign. However, the combustion characteristics and operation limits for different ammonia/hydrogen mixtures still need to be evaluated. For gas turbine applications in particular, the effect of ammonia/hydrogen mixture composition and operating condition on flame behavior and stability is not well understood. The current work was carried out in a laboratory scale, radial swirl-stabilized turbulent combustor. A systematic study of two ammonia/hydrogen blend ratios (70:30 and 80:20 by volume) and a range of equivalence ratios were tested for different pilot-split ratios, to understand the effect on flame shape, stability and dynamics. Time-resolved pressure and integrated heat release fluctuations were measured to evaluate combustor dynamics, and NH2* chemiluminescence flame images were captured to understand spatial differences in flame structure. When comparing blend ratios, differences were observed in flame macrostructures and combustor dynamics, which could be largely attributed to the considerable difference in the laminar flame speeds of the blends. The addition of pilot generally improved the stability and lean operation for both blend ratios.

References

1.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
2.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
3.
Goldmeer
,
J.
,
2019
, “
Power to Gas: Hydrogen for Power Generation - Fuel Flexible Gas Turbines as Enablers for a Low or Reduced Carbon Energy Ecosystem
,” GE Power, Atlanta, GA.https://www.gevernova.com/content/dam/gepower/global/en_US/documents/fuelflexibility/GEA33861-Power-to-Gas-Hydrogen-for-Power-Generation.pdf
4.
Valera-Medina
,
A.
,
Morris
,
S. M.
,
Runyon
,
J.
,
Pugh
,
D. G.
,
Marsh
,
R.
,
Beasley
,
P.
, and
Hughes
,
T.
,
2015
, “
Ammonia, Methane and Hydrogen for Gas Turbines
,”
Energy Proc.
,
75
, pp.
118
123
.10.1016/j.egypro.2015.07.205
5.
Yapicioglu
,
A.
, and
Dincer
,
I.
,
2019
, “
A Review on Clean Ammonia as a Potential Fuel for Power Generators
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
96
108
.10.1016/j.rser.2018.12.023
6.
Figura
,
L.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2007
, “
The Effects of Fuel Composition on Flame Structure and Combustion Dynamics in a Lean Premixed Combustor
,”
ASME
Paper No. GT2007-27298.10.1115/GT2007-27298
7.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3273
3282
.10.1016/j.proci.2014.07.002
8.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
9.
Therkelsen
,
P. L.
,
Portillo
,
J. E.
,
Littlejohn
,
D.
,
Martin
,
S. M.
, and
Cheng
,
R. K.
,
2013
, “
Self-Induced Unstable Behaviors of CH4 and H2/CH4 Flames in a Model Combustor With a Low-Swirl Injector
,”
Combust. Flame
,
160
(
2
), pp.
307
321
.10.1016/j.combustflame.2011.11.008
10.
Zhang
,
J.
, and
Ratner
,
A.
,
2019
, “
Experimental Study on the Excitation of Thermoacoustic Instability of Hydrogen-Methane/Air Premixed Flames Under Atmospheric and Elevated Pressure Conditions
,”
Int. J. Hydrogen Energy
,
44
(
39
), pp.
21324
21335
.10.1016/j.ijhydene.2019.06.142
11.
Karlis
,
E.
,
Liu
,
Y.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M.
,
2019
, “
H2 Enrichment of CH4 Blends in Lean Premixed Gas Turbine Combustion: An Experimental Study on Effects on Flame Shape and Thermoacoustic Oscillation Dynamics
,”
Fuel
,
254
, p.
115524
.10.1016/j.fuel.2019.05.107
12.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
13.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
14.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
K. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14010
14018
.10.1016/j.ijhydene.2017.01.046
15.
El-Rahman
,
A. A.
,
Shanbhogue
,
S.
,
Boushaki
,
T.
, and
Ghoniem
,
A. F.
,
2023
, “
Dynamic Stability Characteristics of CH4/NH3 Mixtures
,”
AIAA
Paper No. 2023-3805.10.2514/6.2023-3805
16.
Shanbhogue
,
S. J.
,
Sanusi
,
S. Y.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
17.
Zhu
,
Y.
,
Curran
,
H. J.
,
Girhe
,
S.
,
Murakami
,
Y.
,
Pitsch
,
H.
,
Senecal
,
K.
,
Yang
,
L.
, and
Zhou
,
C.-W.
,
2024
, “
The Combustion Chemistry of Ammonia and Ammonia/Hydrogen Mixtures: A Comprehensive Chemical Kinetic Modeling Study
,”
Combust. Flame
,
260
, p.
113239
.10.1016/j.combustflame.2023.113239
18.
Valera-Medina
,
A.
,
Pugh
,
D. G.
,
Marsh
,
P.
,
Bulat
,
G.
, and
Bowen
,
P. J.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.10.1016/j.ijhydene.2017.08.028
19.
Mashruk
,
S.
,
Kovaleva
,
M.
,
Alnasif
,
A.
,
Chong
,
C. T.
,
Hayakawa
,
A.
,
Okafor
,
E. C.
, and
Valera-Medina
,
A.
,
2022
, “
Nitrogen Oxide Emissions Analyses in Ammonia/Hydrogen/Air Premixed Swirling Flames
,”
Energy
,
260
, p.
125183
.10.1016/j.energy.2022.125183
20.
Zhu
,
X.
,
Khateeb
,
A. A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2021
, “
NO and OH* Emission Characteristics of Very-Lean to Stoichiometric Ammonia–Hydrogen–Air Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5155
5162
.10.1016/j.proci.2020.06.275
21.
Gubbi
,
S.
,
Zinn
,
B. T.
,
Cole
,
R.
,
Emerson
,
B.
,
Steele
,
R.
,
Charlotte
,
E.
,
Sun
,
W.
, and
Lieuwen
,
T.
,
2024
, “
Evaluation of Minimum NOx Emission From Ammonia Combustion
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031023
.10.1115/1.4064219
22.
Mashruk
,
S.
,
Xiao
,
H.
, and
Valera-Medina
,
A.
,
2021
, “
Rich-Quench-Lean Model Comparison for the Clean Use of Humidified Ammonia/Hydrogen Combustion Systems
,”
Int. J. Hydrogen Energy
,
46
(
5
), pp.
4472
4484
.10.1016/j.ijhydene.2020.10.204
23.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
24.
Li
,
J.
,
Peluso
,
S.
,
Quay
,
B.
,
Blust
,
J.
, and
Srinivasan
,
R.
,
2017
, “
Effect of Pilot Flame on Flame Macrostructure and Combustion Instability
,”
ASME
Paper No. GT2017-64079.10.1115/GT2017-64079
25.
Hubbard
,
P.
,
Beita
,
J.
,
Liu
,
K.
,
Sadasivuni
,
S.
, and
Bulat
,
G.
,
2022
, “
Extension of Fuel Flexibility for Siemens Energy SGT-300-2S Dry Low Emission Combustion System
,”
ASME
Paper No. GT2022-80895.10.1115/GT2022-80895
26.
Beita
,
J.
,
Talibi
,
M.
,
Rocha
,
N.
,
Ezenwajiaku
,
C.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2023
, “
Experimental Investigation of Combustion Instabilities in a Laboratory-Scale, Multi-Can Gas Turbine Combustor
,”
ASME
Paper No. GT2023-103206.10.1115/GT2023-103206
27.
Cosway
,
B.
,
Ahmed
,
P.
,
Talibi
,
M.
, and
Balachandran
,
R.
,
2023
, “
Investigation of NO Production and Flame Structures in Ammonia-Hydrogen Flames
,”
J. Ammonia Energy
,
1
(
1
), p.
V03BT04A030
.10.18573/jae.20
28.
Mashruk
,
S.
,
Okafor
,
E. C.
,
Kovaleva
,
M.
,
Alnasif
,
A.
,
Pugh
,
D. D.
,
Hayakawa
,
A.
, and
Valera-Medina
,
A.
,
2022
, “
Evolution of N2O Production at Lean Combustion Condition in NH3/H2/Air Premixed Swirling Flames
,”
Combust. Flame
,
244
, p.
112299
.10.1016/j.combustflame.2022.112299
29.
Zhang
,
H.
,
Han
,
X.
,
Jiang
,
J.
,
Li
,
X.
,
Gan
,
X.
, and
Zhou
,
B.
,
2022
, “
Numerical Study of Experimental Feasible Heat Release Rate Markers for NH3-H2-Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
47
(
65
), pp.
28165
28175
.10.1016/j.ijhydene.2022.06.124
30.
Mei
,
B.
,
Zhang
,
X.
,
Ma
,
S.
,
Cui
,
M.
,
Guo
,
H.
,
Cao
,
Z.
, and
Li
,
Y.
,
2019
, “
Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia Under Oxygen Enrichment and Elevated Pressure Conditions
,”
Combust. Flame
,
210
, pp.
236
246
.10.1016/j.combustflame.2019.08.033
31.
Kallifronas
,
D.
,
Ahmed
,
P.
,
Massey
,
J. C.
,
Talibi
,
M.
,
Ducci
,
A.
,
Balachandran
,
R.
,
Swaminathan
,
N.
, and
Bray
,
K. N. C.
,
2023
, “
Influences of Heat Release, Blockage Ratio and Swirl on the Recirculation Zone Behind a Bluff Body
,”
Combust. Sci. Technol.
,
195
(
15
), pp.
3785
3809
.10.1080/00102202.2022.2041616
32.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.10.1016/j.expthermflusci.2017.11.019
33.
Unni
,
V. R.
, and
Sujith
,
R.
,
2017
, “
Flame Dynamics During Intermittency in a Turbulent Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3791
3798
.10.1016/j.proci.2016.08.030
34.
Balachandran
,
R.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
,
2008
, “
Non-Linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations of Two Frequencies
,”
Flow, Turbul. Combust.
,
80
(
4
), pp.
455
487
.10.1007/s10494-008-9139-1
You do not currently have access to this content.