Abstract

The identification of the combustion model is always guided by the compromise between accuracy and computational cost. While species transport models offer accuracy, their computational cost requirement can become prohibitive, especially when de-aling with higher-order hydrocarbon fuels. To mitigate this, the virtual mechanism definition aims to optimize the predictivity minimizing the amount of information to be transported. Thereby the virtual mechanism leverages fictitious species and a few step reactions whose parameters calibration is performed with a genetic algorithm. This work outlines the procedure for the derivation of a virtual reaction mechanism for the study of lean H2/CH4 fuel mixtures with 60% of H2 content (by vol.). These conditions require an adequate characterization of the virtual species differential diffusion oriented to reconstruct the flame sensitivity toward the aerodynamic stretch. After the mechanism derivation, its predictivity has been validated on a swirl-stabilized perfectly premixed turbulent test case. The artificially thickened flame model has been adopted to allow the flame front discretization on an large eddy simulation (LES) grid and to model the turbulence chemistry interaction. The numerical results show a very good agreement with the experimental optical measurements confirming the effectiveness of this approach for predicting the H2/CH4 blend.

References

1.
Castellani
,
S.
,
Nassini
,
P. C.
,
Andreini
,
A.
,
Meloni
,
R.
,
Pucci
,
E.
,
Valera Medina
,
A.
,
Morris
,
S.
,
Goktepe
,
B.
, and
Mashruk
,
S.
,
2024
, “
Numerical Modelling of Swirl Stabilised Lean-Premixed H2-CH4 Flames With the Artificially Thickened Flame Model
,”
ASME J. Eng. Gas Turbines Power
, 146(6), p. 061019.10.1115/1.4063829
2.
Agostinelli
,
P. W.
,
Laera
,
D.
,
Chterev
,
I.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2022
, “
On the Impact of H2-Enrichment on Flame Structure and Combustion Dynamics of a Lean Partially-Premixed Turbulent Swirling Flame
,”
Combust. Flame
,
241
, p.
112120
.10.1016/j.combustflame.2022.112120
3.
Garcia
,
A. M.
,
Le Bras
,
S.
,
Prager
,
J.
,
Häringer
,
M.
, and
Polifke
,
W.
,
2022
, “
Large Eddy Simulation of the Dynamics of Lean Premixed Flames Using Global Reaction Mechanisms Calibrated for CH4-H2 fuel Blends
,”
Phys. Fluids
,
34
(
9
), p.
095105
.10.1063/5.0098898
4.
Shastry
,
V.
,
Riber
,
E.
,
Gicquel
,
L.
,
Cuenot
,
B.
, and
Bodoc
,
V.
,
2023
, “
Large Eddy Simulations of Complex Multicomponent Swirling Spray Flames in a Realistic Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2693
2702
.10.1016/j.proci.2022.08.059
5.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
6.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program, Centre for Turbulence Research
, Stanford, CA, July 2–27, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
7.
Franzelli
,
B. G.
,
2011
, “
Impact of the Chemical Description on Direct Numerical Simulations and Large Eddy Simulations of Turbulent Combustion in Industrial Aero-Engines
,”
Ph.D. thesis
, Universitté de Toulouse, Toulouse, France, p.
270
.https://www.researchgate.net/publication/277245675_Impact_of_the_chemical_description_on_Direct_Numerical_Simulation_and_Large_Eddy_Simulation_of_turbulent_combustion_in_industrial_aero-engines
8.
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.10.1016/j.combustflame.2007.10.020
9.
Felden
,
A.
,
Esclapez
,
L.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Wang
,
H.
,
2018
, “
Including Real Fuel Chemistry in LES of Turbulent Spray Combustion
,”
Combust. Flame
,
193
, pp.
397
416
.10.1016/j.combustflame.2018.03.027
10.
Elliott
,
L.
,
Ingham
,
D. B.
,
Kyne
,
A. G.
,
Mera
,
N. S.
,
Pourkashanian
,
M.
, and
Wilson
,
C. W.
,
2004
, “
Genetic Algorithms for Optimisation of Chemical Kinetics Reaction Mechanisms
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
297
328
.10.1016/j.pecs.2004.02.002
11.
Jaouen
,
N.
,
Vervisch
,
L.
,
Domingo
,
P.
, and
Ribert
,
G.
,
2017
, “
Automatic Reduction and Optimisation of Chemistry for Turbulent Combustion Modelling: Impact of the Canonical Problem
,”
Combust. Flame
,
175
, pp.
60
79
.10.1016/j.combustflame.2016.08.030
12.
Cailler
,
M.
,
Darabiha
,
N.
,
Veynante
,
D.
, and
Fiorina
,
B.
,
2017
, “
Building-Up Virtual Optimized Mechanism for Flame Modeling
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1251
1258
.10.1016/j.proci.2016.05.028
13.
Cailler
,
M.
,
Darabiha
,
N.
, and
Fiorina
,
B.
,
2020
, “
Development of a Virtual Optimized Chemistry Method. Application to Hydrocarbon/Air Combustion
,”
Combust. Flame
,
211
, pp.
281
302
.10.1016/j.combustflame.2019.09.013
14.
Maio
,
G.
,
Cailler
,
M.
,
Mercier
,
R.
, and
Fiorina
,
B.
,
2019
, “
Virtual Chemistry for Temperature and CO Prediction in Les of Non-Adiabatic Turbulent Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2591
2599
.10.1016/j.proci.2018.06.131
15.
Maio
,
G.
,
Cailler
,
M.
,
Cuoci
,
A.
, and
Fiorina
,
B.
,
2020
, “
A Virtual Chemical Mechanism for Prediction of NO Emissions From Flames
,”
Combust. Theory Modell.
,
24
(
5
), pp.
872
902
.10.1080/13647830.2020.1772509
16.
Maio
,
G.
,
Cailler
,
M.
,
Darabiha
,
N.
, and
Fiorina
,
B.
,
2021
, “
Capturing Multi-Regime Combustion in Turbulent Flames With a Virtual Chemistry Approach
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2559
2569
.10.1016/j.proci.2020.06.131
17.
Deb
,
K.
,
Sindhya
,
K.
, and
Okabe
,
T.
,
2007
, “
Self-Adaptive Simulated Binary Crossover for Real-Parameter Optimization
,”
Proceedings of GECCO 2007: Genetic and Evolutionary Computation Conference
, London, UK, July 7–11, pp.
1187
1194
.10.1145/1276958.1277190
18.
Cerfacs, 2024, “
Adapted version of Cantera form CERFACS
,” Cerfacs, Toulouse, France, accessed Sept. 30, 2024, https://www.cerfacs.fr/cantera/
19.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, et al., 2000, “
GRI 3.0
,” accessed Sept. 30, 2024, http://combustion.berkeley.edu/gri-mech/
20.
Detomaso
,
N.
,
Hok
,
J. J.
,
Dounia
,
O.
,
Laera
,
D.
, and
Poinsot
,
T.
,
2023
, “
A Generalization of the Thickened Flame Model for Stretched Flames
,”
Combust. Flame
,
258
, p.
113080
.10.1016/j.combustflame.2023.113080
21.
Castellani
,
S.
,
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Boxx
,
I.
, and
Andreini
,
A.
,
2023
, “
High-Fidelity H2–CH4 Jet in Crossflow Modelling With a Flame Index-Controlled Artificially Thickened Flame Model
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35291
35304
.10.1016/j.ijhydene.2023.05.210
22.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.10.1016/0010-2180(91)90126-V
23.
Bougrine
,
S.
,
Richard
,
S.
,
Colin
,
O.
, and
Veynante
,
D.
,
2014
, “
Fuel Composition Effects on Flame Stretch in Turbulent Premixed Combustion: Numerical Analysis of Flame-Vortex Interaction and Formulation of a New Efficiency Function
,”
Flow, Turbul. Combust.
,
93
(
2
), pp.
259
281
.10.1007/s10494-014-9546-4
24.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
25.
Durand
,
L.
, and
Polifke
,
W.
,
2007
, “
Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver
,”
ASME
Paper No. GT2007-28188.10.1115/GT2007-28188
You do not currently have access to this content.