Abstract

A strut injector for burning hydrogen has been optimized using an automated workflow system. In order to choose the optimal set of injectors to cover the design space, an optimized design of experiments (DOE) method was used to automatically choose the parameters that best spanned the design space. One hundred candidate designs were chosen, and a script was used to generate a series of stereolithography (STL) files for each design. The STL files were then uploaded to a supercomputer for computational fluid dynamics analysis. For each of the 100 designs, a four step process was followed to generate the required data, and this included an automated mesh generation step, a field initialization step, a mesh adaptation step, and finally an large eddy simulation all within the yales2 numerical framework. In order to reduce the time required for postprocessing and the amount of data required, the simulations relied heavily on an on-the-fly postprocessing methodology, which reduced the complex time-unsteady flow fields to a small number of quantified outputs of interest that measured the suitability of each design such as the pressure drop across the injector and the efficiency of the mixing process. At the conclusion of these simulations, automated scripts translated these outputs into a smaller set of parameters that could be used to compare each design and allow subsequent optimization and surrogate modeling. Several surrogate modeling methods were attempted with mixed results; however, a simple classification methodology quickly identified the parameters of interest.

References

1.
Farjon
,
P.
,
Bertier
,
N.
,
Dubreuil
,
S.
, and
Morio
,
J.
,
2023
, “
Towards the Multifidelity Optimization of H2-Air Injector for Aircraft Propulsion
,”
ASME
Paper No. GT2023-101260.10.1115/GT2023-101260
2.
Reumschüssel
,
J. M.
,
von Saldern
,
J. G.
,
Ćosić
,
B.
, and
Paschereit
,
C. O.
,
2024
, “
Multi-Objective Experimental Combustor Development Using Surrogate Model-Based Optimization
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031001
.10.1115/1.4063535
3.
Gövert
,
S.
,
Gruhlke
,
P.
,
Behrendt
,
T.
, and
Janus
,
B.
,
2024
, “
Scaling of Lean Aeronautical Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
, 146(6), p.
061007
.10.1115/1.4063776
4.
Pegemanyfar
,
N.
,
Pfitzner
,
M.
,
Eggels
,
R.
,
von der Bank
,
R.
, and
Zedda
,
M.
,
2006
, “
Development of an Automated Preliminary Combustion Chamber Design Tool
,”
ASME
Paper No. GT2006-90430.10.1115/GT2006-90430
5.
Tangirala
,
V. E.
,
Tolpadi
,
A. K.
,
Danis
,
A. M.
, and
Mongia
,
H.
,
2000
, “
Parametric Modeling Approach to Gas Turbine Combustor Design
,”
ASME
Paper No. 2000-GT-0129.10.1115/2000-GT-0129
6.
Dudebout
,
R.
,
Reynolds
,
B.
, and
Molla-Hosseini
,
K.
,
2004
, “
Integrated Process for CFD Modeling and Optimization of Gas Turbine Combustors
,”
ASME
Paper No. GT2004-54011.10.1115/GT2004-54011
7.
Asgari
,
H.
,
Chen
,
X.
,
Menhaj
,
M. B.
, and
Sainudiin
,
R.
,
2013
, “
Artificial Neural Network-Based System Identification for a Single-Shaft Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092601
.10.1115/1.4024735
8.
Chi
,
C.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2021
, “
On-the-Fly Artificial Neural Network for Chemical Kinetics in Direct Numerical Simulations of Premixed Combustion
,”
Combust. Flame
,
226
, pp.
467
477
.10.1016/j.combustflame.2020.12.038
9.
Sunami
,
T.
,
Magre
,
P.
,
Bresson
,
A.
,
Grisch
,
F.
,
Orain
,
M.
, and
Kodera
,
M.
,
2005
, “
Experimental Study of Strut Injectors in a Supersonic Combustor Using OH-PLIF
,”
AIAA
Paper No. 2005-3304.10.2514/6.2005-3304
10.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Guiberti
,
T. F.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Modeling of H2/Air Flame Stabilization Regime Above Coaxial Dual Swirl Injectors
,”
Combust. Flame
,
255
, p.
112908
.10.1016/j.combustflame.2023.112908
11.
Poinsot
,
T.
, and
Veynante
,
D.
,
2022
,
Theoretical and Numerical Combustion
,
AFNIL
, Paris, France.
12.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Zenodo, Switzerland.
13.
Curran
,
H. J.
,
2019
, “
Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
57
81
.10.1016/j.proci.2018.06.054
14.
Gimenez-Lopez
,
J.
,
Rasmussen
,
C. T.
,
Hashemi
,
H.
,
Alzueta
,
M. U.
,
Gao
,
Y.
,
Marshall
,
P.
,
Goldsmith
,
C. F.
, and
Glarborg
,
P.
,
2016
, “
Experimental and Kinetic Modeling Study of C2H2 Oxidation at High Pressure
,”
Int. J. Chem. Kinet.
,
48
(
11
), pp.
724
738
.10.1002/kin.21028
15.
Cho
,
E.-S.
,
Jeong
,
H.
,
Hwang
,
J.
, and
Kim
,
M.
,
2022
, “
A Novel 100% Hydrogen Gas Turbine Combustor Development for Industrial Use
,”
ASME
Paper No. GT2022-80619.10.1115/GT2022-80619
16.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
17.
Meynet
,
S.
,
Moureau
,
V.
,
Lartigue
,
G.
, and
Hadjadj
,
A.
,
2021
, “
Automatic Surface and Volume Mesh Generation for Roughness-Resolved LES of Additive-Manufacturing Heat Exchangers
,” 13th International ERCOFTAC Symposium on Engineering, Turbulence, Modelling and Measurements (
ETMM13
), Rhodes, Greece, Sept.
15
17
.https://hal.science/hal-03390262
18.
Grenouilloux
,
A.
,
Leparoux
,
J.
,
Moureau
,
V.
,
Balarac
,
G.
,
Berthelon
,
T.
,
Mercier
,
R.
,
Bernard
,
M.
,
Bénard
,
P.
,
Lartigue
,
G.
, and
Métais
,
O.
,
2023
, “
Toward the Use of LES for Industrial Complex Geometries. Part I: Automatic Mesh Definition
,”
J. Turbul.
,
24
(
6–7
), pp.
280
310
.10.1080/14685248.2023.2214399
19.
Leparoux
,
J.
,
Mercier
,
R.
,
Moureau
,
V.
, and
Musaefendic
,
H.
,
2018
, “
Primary Atomization Simulation Applied to a Jet in Crossflow Aeronautical Injector With Dynamic Mesh Adaptation
,”
14th Triennal International Conference on Liquid Atomization and Spray Systems, ICLASS 2018
, Chicago, IL, July
22
26
.https://www.researchgate.net/publication/326631733_Primary_atomization_simulation_applied_to_a_jet_in_crossflow_aeronautical_injector_with_dynamic_mesh_adaptation
20.
Dapogny
,
C.
,
Dobrzynski
,
C.
, and
Frey
,
P.
,
2014
, “
Three-Dimensional Adaptive Domain Remeshing, Implicit Domain Meshing, and Applications to Free and Moving Boundary Problems
,”
J. Comput. Phys.
,
262
, pp.
358
378
.10.1016/j.jcp.2014.01.005
21.
Dobrzynski
,
C.
, and
Frey
,
P.
,
2008
, “
Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations
,”
Proceedings of the 17th International Meshing Roundtable
,
Springer
, Berlin, Heidelberg, pp.
177
194
.10.1007/978-3-540-87921-3_11
22.
Joseph
,
V. R.
,
Gul
,
E.
, and
Ba
,
S.
,
2015
, “
Maximum Projection Designs for Computer Experiments
,”
Biometrika
,
102
(
2
), pp.
371
380
.10.1093/biomet/asv002
23.
Ba
,
S.
,
Myers
,
W. R.
, and
Brenneman
,
W. A.
,
2015
, “
Optimal Sliced Latin Hypercube Designs
,”
Technometrics
,
57
(
4
), pp.
479
487
.10.1080/00401706.2014.957867
24.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2010
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
C. R. Méc.
,
339
(
2–3
), pp.
141
148
.10.1016/j.crme.2010.12.001
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
26.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
27.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
28.
Kraushaar
,
M.
,
2011
, “
Application of the Compressible and Low-Mach Number Approaches to Large-Eddy Simulation of Turbulent Flows in Aero-Engines
,” Ph.D. thesis,
Institut National Polytechnique de Toulouse
,
Toulouse, France
.
29.
Roe
,
P. L.
,
1985
, “
Some Contributions to the Modelling of Discontinuous Flows
,”
Large-Scale Computations in Fluid Mechanics
, Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, Providence, RI, June 27–July 8, pp.
163
193
.https://ui.adsabs.harvard.edu/abs/1985ams..conf..163R/abstract
30.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
58
(
1
), pp.
267
288
.10.1111/j.2517-6161.1996.tb02080.x
31.
Friedman
,
J. H.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2010
, “
Regularization Paths for Generalized Linear Models Via Coordinate Descent
,”
J. Stat. Software
,
33
(
1
), pp.
1
22
.10.18637/jss.v033.i01
32.
Simon
,
N.
,
Friedman
,
J. H.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2011
, “
Regularization Paths for Cox's Proportional Hazards Model Via Coordinate Descent
,”
J. Stat. Software
,
39
(
5
), pp.
1
13
.10.18637/jss.v039.i05
33.
Storlie
,
C. B.
,
Bondell
,
H. D.
,
Reich
,
B. J.
, and
Zhang
,
H. H.
,
2011
, “
Surface Estimation, Variable Selection, and the Nonparametric Oracle Property
,”
Stat. Sin.
,
21
(
2
), pp.
679
705
.10.5705/ss.2011.030a
34.
Bhattacharya
,
C.
,
Christopher
,
J.
,
Thierry
,
D.
,
Biruduganti
,
M.
,
Supekar
,
S.
, and
Dasgupta
,
D.
,
2023
, “
Data-Driven Surrogate Modeling of Microturbine Combustors Burning Hydrogen Blends
,”
ASME
Paper No. GT2023-103229.10.1115/GT2023-103229
35.
Gu
,
M.
,
Palomo
,
J.
, and
Berger
,
J. O.
,
2019
, “
RobustGaSP: Robust Gaussian Stochastic Process Emulation in R
,”
R J.
,
11
(
1
), pp.
112
136
.10.32614/RJ-2019-011
36.
Christ
,
P.
,
2019
, “
Modeling of Automotive HVAC Units Using Proper Orthogonal Decomposition
,”
Ph.D. thesis
,
Technical University of Munich
,
Munich, Germany
.https://mediatum.ub.tum.de/doc/1464400/1464400.pdf
37.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
38.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
39.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
40.
Marant
,
M.
, and
Cossu
,
C.
,
2018
, “
Influence of Optimally Amplified Streamwise Streaks on the Kelvin–Helmholtz Instability
,”
J. Fluid Mech.
,
838
, pp.
478
500
.10.1017/jfm.2017.925
41.
Leroy
,
M.
,
Mirat
,
C.
,
Renaud
,
A.
,
Puggelli
,
S.
,
Zurbach
,
S.
, and
Vicquelin
,
R.
,
2024
, “
Structure and NOx Emissions of Stratified Hydrogen-Air Flames Stabilized on a Coaxial Injector
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031012
.10.1115/1.4063579
You do not currently have access to this content.