Abstract

Due to climate change, there has been an increasing demand for fuels that can accelerate the transition away from fossil fuels to clean energy. Humidified product gas obtained from gasifying biomass is emerging as a promising candidate to replace natural gas, as it is composed of a gaseous mixture of hydrogen, steam, carbon monoxide, and methane. However, the gasification process releases ammonia and other nitrogen bearing compounds into the product gas, resulting in substantial increases in nitric oxides, NOx, in the exhaust. As such, there has been a recent push to understand the underlying chemical kinetics that drive NOx formation in order to optimize gas turbines to mitigate emissions at the source. In this study, a simplified chemical reactor network (CRN) model for a gas turbine rich–quench–lean (RQL) combustor was developed in cantera. The following parameters were investigated in this study: equivalence ratio of the primary section, overall equivalence ratio, steam dilution, postflame residence time, and recirculation from the postquench region to the primary section. Additionally, a benchmark CRN representing a lean burner (LB) is also developed. Results of the CRN model suggest that, when comparing to LB, a RQL type combustor delivers up to a 75% reduction in emissions. Additionally, it was found that, for both the LB and RQL combustors, an overall lean to stoichiometric equivalence ratio is well suited to reduce emissions in highly humidified fuels, while for moderately humidified fuels it is preferable to operate in an overall slightly rich equivalence ratio. The difference observed is mainly due to the fact that, at high humidification and lean conditions, the temperature is favorable for the conversion of ammonia to nitrogen, while, at moderate humidification and rich conditions, NO reacts with ammonia in the reburn process. Finally, it is suggested that the incorporation of recirculation from the secondary section to the primary section of the RQL burner results in a broader low emission region, due to more favorable conditions for ammonia conversion to nitrogen in the primary section.

References

1.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Wang
,
G.
,
Boyette
,
W. R.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2021
, “
Stability Limits and NO Emissions of Premixed Swirl Ammonia-Air Flames Enriched With Hydrogen or Methane at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
46
(
21
), pp.
11969
11981
.10.1016/j.ijhydene.2021.01.036
2.
Dybe
,
S.
,
Güthe
,
F.
,
Bartlett
,
M.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2021
, “
Experimental Characterization of the Combustion in Fuel Flexible Humid Power Cycles
,”
ASME
Paper No. GT2021-58675.10.1115/GT2021-58675
3.
Day
,
M. S.
,
Bell
,
J. B.
,
Gao
,
X.
, and
Glarborg
,
P.
,
2011
, “
Numerical Simulation of Nitrogen Oxide Formation in Lean Premixed Turbulent H2/O2/N2 Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1591
1599
.10.1016/j.proci.2010.06.128
4.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
5.
Yang
,
S.
,
Raslan
,
A.
,
Durocher
,
A.
,
Güthe
,
F.
, and
Bergthorson
,
J.
,
2023
, “
Numerical Investigation of NH3 Doped Fuels From Biomass Gasification on Fuel-Bound NOx Formation at Gas Turbine Conditions
,”
ASME
Paper No. GT2023-103191.10.1115/GT2023-103191
6.
Wang
,
G.
,
Guiberti
,
T. F.
,
Cardona
,
S.
,
Jimenez
,
C. A.
, and
Roberts
,
W. L.
,
2023
, “
Effects of Residence Time on the NOx Emissions of Premixed Ammonia-Methane-Air Swirling Flames at Elevated Pressure
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4277
4288
.10.1016/j.proci.2022.07.141
7.
Samuelsen
,
S.
,
2006
, “
Rich Burn, Quick-Mix, Lean Burn (RQL) Combustor
,”
The Gas Turbine Handbook
, U.S. Department of Energy-National Energy Technology Laboratory (NETL), Albany, OR, pp.
227
233
.
8.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1393
1417
.10.1016/j.rser.2014.10.034
9.
Kurata
,
O.
,
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kawano
,
M.
, et al.,
2019
, “
Development of a Wide Range-Operable, Rich-Lean low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4587
4595
.10.1016/j.proci.2018.09.012
10.
Hachem
,
J.
,
Schuhler
,
T.
,
Orhon
,
D.
,
Cuif-Sjostrand
,
M.
,
Zoughaib
,
A.
, and
Molière
,
M.
,
2022
, “
Exhaust Gas Recirculation Applied to Single-Shaft Gas Turbines: An Energy and Exergy Approach
,”
Energy
,
238
, p.
121656
.10.1016/j.energy.2021.121656
11.
Masoumi
,
S.
,
Houshfar
,
E.
, and
Ashjaee
,
M.
,
2024
, “
Experimental and Numerical Analysis of Ammonia/Hydrogen Combustion Under Artificial Exhaust Gas Recirculation
,”
Fuel
,
357
, p.
130081
.10.1016/j.fuel.2023.130081
12.
Salzmann
,
R.
, and
Nussbaumer
,
T.
,
2001
, “
Fuel Staging for NOx Reduction in Biomass Combustion: Experiments and Modeling
,”
Energy Fuels
,
15
(
3
), pp.
575
582
.10.1021/ef0001383
13.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
K. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14010
14018
.10.1016/j.ijhydene.2017.01.046
14.
Lipardi
,
A. C.
,
Versailles
,
P.
,
Watson
,
G. M.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2017
, “
Experimental and Numerical Study on NOx Formation in CH4–Air Mixtures Diluted With Exhaust Gas Components
,”
Combust. Flame
,
179
, pp.
325
337
.10.1016/j.combustflame.2017.02.009
15.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2022
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, Version 2.6.0.10.5281/zenodo.8137090
16.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Measurement and Modelling of the Laminar Burning Velocity of Methane-Ammonia-Air Flames at High Pressures Using a Reduced Reaction Mechanism
,”
Combust. Flame
,
204
, pp.
162
175
.10.1016/j.combustflame.2019.03.008
17.
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2023
, “
A Shock-Tube Study of NH3 and NH3/H2 Oxidation Using Laser Absorption of NH3 and H2O
,”
Proc. Combust. Inst.
,
39
(
1
), pp.
233
241
.10.1016/j.proci.2022.08.016
18.
Rocha
,
R. C.
,
Costa
,
M.
, and
Bai
,
X.-S.
,
2021
, “
Combustion and Emission Characteristics of Ammonia Under Conditions Relevant to Modern Gas Turbines
,”
Combust. Sci. Technol.
,
193
(
14
), pp.
2514
2533
.10.1080/00102202.2020.1748018
19.
Versailles
,
P.
,
Watson
,
G. M.
,
Lipardi
,
A. C.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.10.1016/j.combustflame.2015.11.001
20.
Wang
,
Z.
,
Han
,
X.
,
He
,
Y.
,
Zhu
,
R.
,
Zhu
,
Y.
,
Zhou
,
Z.
, and
Cen
,
K.
,
2021
, “
Experimental and Kinetic Study on the Laminar Burning Velocities of NH3 Mixing With CH3OH and C2H5OH in Premixed Flames
,”
Combust. Flame
,
229
, p.
111392
.10.1016/j.combustflame.2021.02.038
21.
Arunthanayothin
,
S.
,
Stagni
,
A.
,
Song
,
Y.
,
Herbinet
,
O.
,
Faravelli
,
T.
, and
Battin-Leclerc
,
F.
,
2021
, “
Ammonia–Methane Interaction in Jet-Stirred and Flow Reactors: An Experimental and Kinetic Modeling Study
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
345
353
.10.1016/j.proci.2020.07.061
22.
Curran
,
H.
, personal communication.
23.
Li
,
M.
,
He
,
X.
,
Hashemi
,
H.
,
Glarborg
,
P.
,
Lowe
,
V. M.
,
Marshall
,
P.
,
Fernandes
,
R.
, and
Shu
,
B.
,
2022
, “
An Experimental and Modeling Study on Auto-Ignition Kinetics of Ammonia/Methanol Mixtures at Intermediate Temperature and High Pressure
,”
Combust. Flame
,
242
, p.
112160
.10.1016/j.combustflame.2022.112160
You do not currently have access to this content.