Abstract

Erosion of steam turbine blades due to coarse droplet impingement is a serious problem. The physical relationship is still elusive between the dynamics of wavy liquid film on a wall and the droplet dispersion from the trailing edge. In this study, we experimentally and theoretically investigate the liquid film subjected to the turbulent airflow and following fragmentation process under well-controlled flow conditions, where the airflow velocity is up to 100 m/s, and initial liquid film velocity is 0.06 and 0.10 m/s, and trailing edge thicknesses are 0.5, 1.0, and 2.0 mm. By applying the developed planar laser-induced fluorescence (PLIF)-based method with no use of artificial threshold of brightness, we quantify the film thickness and interfacial friction factor. As the airflow velocity increases, the liquid film instability promotes and the interfacial friction factor increases, much exceeding the Blasius correlation. When the liquid film reaches the trailing edge, several liquid columns extend by the Rayleigh–Taylor instability. We identify that the interfacial friction factor to accelerate the ligament corresponds to the Blasius correlation, distinct from the one on the wavy liquid film upstream. Incorporating the identified two interfacial friction factors, we successfully formulate the diameter of ligament as the characteristic lengthscale of the spreading droplet downstream. Derived formulation for the droplet statistics is well validated by the experimental results of mean and maximum diameters and size distribution.

References

1.
International Atomic Energy Agency
,
2022
,
Energy, Electricity and Nuclear Power Estimates for the Period Up to 2050
(Reference Data Series No. 1),
International Atomic Energy Agency
,
Vienna, Austria
.
2.
Ray
,
S.
,
2023
, “
Steam Turbine Development for Small Modular Reactors
,”
ASME
Paper No. GT2023-103401.10.1115/GT2023-103401
3.
Hesketh
,
J.
, and
Walker
,
P.
,
2005
, “
Effects of Wetness in Steam Turbines
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
219
(
12
), pp.
1301
1314
.10.1243/095440605X32110
4.
White
,
A.
, and
Meacock
,
A.
,
2004
, “
An Evaluation of the Effects of Water Injection on Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
748
754
.10.1115/1.1765125
5.
Gujba
,
A. K.
,
Mahdipoor
,
M. S.
, and
Medraj
,
M.
,
2021
, “
Water Droplet Impingement Erosion Performance of WC-Based Coating Sprayed by HVAF and HVOF
,”
Wear
,
484–485
, p.
203904
.10.1016/j.wear.2021.203904
6.
Sasao
,
Y.
,
Kudo
,
T.
,
Segawa
,
K.
,
Tabata
,
S.
,
Senoo
,
S.
, and
Takata
,
R.
,
2023
, “
Comprehensive Simulation of Moisture Loss in LP Steam Turbine Based on 3D Unsteady Eulerian-Lagrangian Solver
,”
ASME
Paper No. GT2023-103379.10.1115/GT2023-103379
7.
Ju
,
P.
,
Liu
,
Y.
,
Brooks
,
C.
, and
Ishii
,
M.
,
2019
, “
Prediction of Interfacial Shear Stress of Vertical Upward Adiabatic Annular Flow in Pipes
,”
Int. J. Heat Mass Transfer
,
133
, pp.
500
509
.10.1016/j.ijheatmasstransfer.2018.12.057
8.
Zhang
,
H.
,
Mori
,
S.
,
Hisano
,
T.
, and
Yoshida
,
H.
,
2023
, “
Effect of Gas Density and Surface Tension on Liquid Film Thickness in Vertical Upward Disturbance Wave Flow
,”
Int. J. Multiphase Flow
,
159
, p.
104342
.10.1016/j.ijmultiphaseflow.2022.104342
9.
Inoue
,
T.
,
Inoue
,
C.
,
Fujii
,
G.
, and
Daimon
,
Y.
,
2022
, “
Evaporation of Three-Dimensional Wavy Liquid Film Entrained by Turbulent Gas Flow
,”
AIAA J.
,
60
(
6
), pp.
3805
3812
.10.2514/1.J061381
10.
Kamada
,
Y.
,
Inoue
,
T.
,
Wang
,
Z.
,
Inoue
,
C.
, and
Senoo
,
S.
,
2023
, “
Annular Liquid-Film Fragmentation Process Sheared by Developed Turbulent Gas Flow
,”
ASME
Paper No. GT2023-101666.10.1115/GT2023-101666
11.
Häber
,
T.
,
Gebretsadik
,
M.
,
Bockhorn
,
H.
, and
Zarzalis
,
N.
,
2015
, “
The Effect of Total Reflection in PLIF Imaging of Annular Thin Films
,”
Int. J. Multiphase Flow
,
76
, pp.
64
72
.10.1016/j.ijmultiphaseflow.2015.06.009
12.
Cherdantsev
,
A.
,
An
,
J.
,
Charogiannis
,
A.
, and
Markides
,
C.
,
2019
, “
Simultaneous Application of Two Laser-Induced Fluorescence Approaches for Film Thickness Measurements in Annular Gas-Liquid Flows
,”
Int. J. Multiphase Flow
,
119
, pp.
237
258
.10.1016/j.ijmultiphaseflow.2019.07.013
13.
Zadrazil
,
I.
,
Matar
,
O.
, and
Markides
,
C.
,
2014
, “
An Experimental Characterization of Downwards Gas–Liquid Annular Flow by Laser-Induced Fluorescence: Flow Regimes and Film Statistics
,”
Int. J. Multiphase Flow
,
60
, pp.
87
102
.10.1016/j.ijmultiphaseflow.2013.11.008
14.
Charogiannis
,
A.
,
An
,
J.
,
Voulgaropoulos
,
V.
, and
Markides
,
C.
,
2019
, “
Structured Planar Laser-Induced Fluorescence (S-PLIF) for the Accurate Identification of Interfaces in Multiphase Flows
,”
Int. J. Multiphase Flow
,
118
, pp.
193
204
.10.1016/j.ijmultiphaseflow.2019.06.002
15.
Inoue
,
C.
, and
Maeda
,
I.
,
2021
, “
On the Droplet Entrainment From Gas-Sheared Liquid Film
,”
Phys. Fluids
,
33
(
1
), p.
011705
.10.1063/5.0038399
16.
Villermaux
,
E.
,
1998
, “
On the Role of Viscosity in Shear Instabilities
,”
Phys. Fluids
,
10
(
2
), pp.
368
373
.10.1063/1.869529
17.
Schubring
,
D.
,
Shedd
,
T.
, and
Hurlburt
,
E.
,
2010
, “
Studying Disturbance Waves in Vertical Annular Flow With High-Speed Video
,”
Int. J. Multiphase Flow
,
36
(
5
), pp.
385
396
.10.1016/j.ijmultiphaseflow.2010.01.003
18.
Kamada
,
Y.
,
Wang
,
Z.
,
Inoue
,
C.
, and
Senoo
,
S.
, “
Time-Variant Brightness Based Planar Laser-Induced Fluorescence for Thickness Measurement of Wavy Liquid Films: A Calibration-Free and Threshold-Free Method
,” epub.
19.
Nusselt
,
W.
,
1916
, “
Die oberflachenkondensation des wasserdampfes
,”
VDI Z.
,
60
, pp.
541
546
.
20.
Ishii
,
M.
, and
Grolmes
,
M.
,
1975
, “
Inception Criteria for Droplet Entrainment in Two-Phase Concurrent Film Flow
,”
AIChE J.
,
21
(
2
), pp.
308
318
.10.1002/aic.690210212
21.
Nikuradse
,
J.
,
1933
, “
Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren Gesetzmässigkeiten der turbulenten Stromung in glatten Rohren (1932), Translated Into English as Laws of Turbulent Flow in Smooth Pipes
,”
Forsch. Geb. Ingenieurwes. A
,
4
(
1
), p.
44
.10.1007/BF02716946
22.
Moody
,
L.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
678
.10.1115/1.4018140
23.
Fore
,
L.
,
Beus
,
S.
, and
Bauer
,
R.
,
2000
, “
Interfacial Friction in Gas–Liquid Annular Flow: Analogies to Full and Transition Roughness
,”
Int. J. Multiphase Flow
,
26
(
11
), pp.
1755
1769
.10.1016/S0301-9322(99)00114-7
24.
Villermaux
,
E.
,
Marmottant
,
P.
, and
Duplat
,
J.
,
2004
, “
Ligament-Mediated Spray Formation
,”
Phys. Rev. Lett.
,
92
(
7
), p.
074501
.10.1103/PhysRevLett.92.074501
25.
Villermaux
,
E.
,
2007
, “
Fragmentation
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
419
446
.10.1146/annurev.fluid.39.050905.110214
You do not currently have access to this content.