Abstract

A transient simulation of shutdown cooling for a gas turbine test rig configuration under ventilated natural convection has been successfully demonstrated using a coupled aerothermal approach. Large eddy simulation (LES) and finite element analysis (FEA) were employed for fluid domain computational fluid dynamics (CFD) and solid component thermal conduction simulation, respectively. Coupling between LES and FEA was achieved through a plugin communicator. The buoyancy-induced chimney effect under the axially ventilated natural convection is correctly reproduced. The hotter turbulent flow in the upper part of the annular path and the colder laminar-type air movement in the lower part of the annulus are appropriately captured. The heat transfer features in the annular passage are also faithfully replicated, with heat flux of the inner cylinder reaching its maximum and minimum at the bottom dead center (BDC) and the top dead center (TDC), respectively. Agreement with experimental measurements is good in terms of both temperature and heat flux, and the result of the transient simulation for the shutdown cooling is encouraging too. In addition, radiation is simulated in the FEA model based on the usual gray body assumptions and Lambert's law for the coupled computation. It has been shown that at the high power (HP) condition, the radiation for the inner cylinder is approximately 11% of its convective heat flux counterpart. The importance of radiation is thus clearly revealed even for the present rig test case with a scaled-down temperature setup.

References

1.
Fahy
,
D. D.
,
2020
, “
On Natural Convection in a Large Civil Gas Turbine
,”
Ph.D. dissertation
,
University of Oxford
,
Oxford, UK
.https://ora.ox.ac.uk/objects/uuid:1f557423-e0fd-478a-9e99-db7eef9f37fd
2.
Fahy
,
D. D.
, and
Ireland
,
P.
,
2021
, “
The Effect of Wall Thermal Boundary Condition on Natural Convective Shutdown Cooling in a Gas Turbine
,”
ASME J. Turbomach.
,
143
(
11
), p. 111011.10.1115/1.4051272
3.
Fahy
,
D. D.
, and
Ireland
,
P.
,
2023
, “
Axial Ventilation and Blade Row Effects on Transient Natural Convective Shutdown Cooling in a Gas Turbine
,”
ASME J. Turbomach.
,
145
(
11
), p. 111003.10.1115/1.4063246
4.
Baldassarre
,
L.
, and
Fontana
,
M.
,
2010
, “
Modeling of Rotor Bow During Hot Restart in Centrifugal Compressors
,”
Proceedings of 39th Turbomachinery Symposium
, Houston, TX, Oct. 4–7, Turbomachinery Lab in Texas A&M University, College Station, TX, pp.
1
8
.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/163042/ch02_Baldassarre.pdf;jsessionid=8886DDF38D64E0AE8399956D68B30A67?sequence=1
5.
Oertel
,
H.
, ed.,
2004
,
Prandtl's Essentials of Fluid Mechanics
, 2nd ed.,
Springer, New York
.
6.
Zhuo
,
M.
,
Yang
,
L. H.
,
Xia
,
K.
, and
Yu
,
L.
,
2019
, “
A New Computational Method for Predicting the Thermal Bow of a Rotor
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
233
(
12
), pp.
4372
4380
.10.1177/0954406218815722
7.
Yu
,
X.
,
Liu
,
Z.
,
Zhou
,
Z.
,
Feng
,
J.
, and
He
,
P.
,
2020
, “
Experimental Research on the Characteristics of Thermal Bow in an Aeroengine HP Spool
,”
ASME
Paper No. GT2020-14109.10.1115/GT2020-14109
8.
Peng
,
H.
,
Zhou
,
Z.
,
Feng
,
J.
,
Yu
,
X.
, and
Liu
,
Z.
,
2020
, “
Prediction of the Thermal Bow of Rotor Based on the Measured Displacement and Temperature
,”
Int. J. Distrib. Sens. Networks
,
16
(
10
), p. 155014772096299.10.1177/1550147720962993
9.
Tisarev
,
A.
,
Falaleev
,
S.
,
Koch
,
C.
,
Nagorski
,
M.
, and
Staudacher
,
S.
,
2016
, “
Natural Cooling Affecting the Restart of Micro Gas Turbine
,”
ASME
Paper No. GT2016-56982.10.1115/GT2016-56982
10.
Smith
,
E. O.
, and
Neely
,
A. J.
,
2014
, “
The Effect of Aircraft Integration Design on Gas Turbine Shaft Thermal Bow and the Newkirk Effect
,”
ASME
Paper No. GT2014-25511.10.1115/GT2014-25511
11.
Smith
,
E. O.
, and
Neely
,
A. J.
,
2015
, “
The Effect of Compressor Shaft Geometry on Shaft Thermal Bow Due to Natural Convection
,”
ASME
Paper No. GT2015-42940.10.1115/GT2015-42940
12.
Smith
,
E. O.
, and
Neely
,
A. J.
,
2016
, “
Experimental Observations of Thermal Bow on a Gas Turbine Compressor Rotor Analogue
,”
ASME
Paper No. GT2016-56800.10.1115/GT2016-56800
13.
Smith
,
E. O.
,
2017
, “
A Parametric Study of Compressor Rotor Thermal Bow in Aerospace Gas Turbines
,”
Ph.D. dissertation
,
University of New South Wales
,
Canberra, Australia
.https://www.researchgate.net/publication/321307290_A_Parametric_Study_of_Compressor_Rotor_Thermal_Bow_in_Aerospace_Gas_Turbines
14.
Smith
,
E. O.
,
de Baar
,
J. H. S.
, and
Neely
,
A. J.
,
2018
, “
A Sobol' Sequence Parametric Analysis of Rotor Thermal Bow in Gas Turbines
,”
ASME
Paper No. GT2018-75347.10.1115/GT2018-75347
15.
Pilkington
,
A.
,
2018
, “
Numerical Prediction of Natural Convection in Gas Turbines
,”
Ph.D. dissertation
,
University of Oxford
, Oxford, UK.https://ora.ox.ac.uk/objects/uuid:7fe9acc0-e252-4b9cb7a3-cab95988418b
16.
Pilkington
,
A.
,
Rosic
,
B.
,
Tanimoto
,
K.
, and
Horie
,
S.
,
2019
, “
Prediction of Natural Convection Heat Transfer in Gas Turbines
,”
Int. J. Heat Mass Transfer
,
141
, pp.
233
244
.10.1016/j.ijheatmasstransfer.2019.06.074
17.
Pařez
,
J.
,
Tater
,
A.
,
Kovář
,
P.
,
Mačák
,
P.
, and
Vampola
,
T.
,
2023
, “
Influence of Geometrical Design on the Cooling Process of Double Annular Turbine Section
,”
Int. J. Engine Res.
,
24
(
8
), pp.
3707
3719
.10.1177/14680874231167206
18.
Illingworth
,
J. B.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2005
, “
3D Fluid-Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System
,”
ASME
Paper No. GT2005-68939.10.1115/GT2005-68939
19.
Sun
,
Z.
,
Amirante
,
D.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2016
, “
Coupled Aerothermal Modeling of a Rotating Cavity With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032505
.10.1115/1.4031387
20.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
J. N.
,
Volkov
,
K.
, and
Barnes
,
C.
,
2010
, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031016
.10.1115/1.3147105
21.
Fadl
,
M.
, and
He
,
L.
,
2017
, “
On Large Eddy Simulation Based Conjugate Heat Transfer Procedure for Transient Natural Convection
,”
ASME J. Turbomach.
,
139
, p.
111010
.10.1115/1.4037492
22.
Ansys, Inc.
, 2022, “User's Guide,” Ansys UK Ltd., Cambridge, UK, accessed Sept. 10, 2024, https://www.ansys.com/
23.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
24.
Sun
,
Z.
,
Gao
,
F.
,
Chew
,
J.
, and
Amirante
,
D.
,
2022
, “
Large Eddy Simulation Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121023
.10.1115/1.4055686
25.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J.
, and
Young
,
C.
,
2007
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.10.1115/1.2364192
26.
Armstrong
,
I.
, and
Edmunds
,
T. M.
,
1989
, “
Fully Automatic Analysis in the Industrial Environment
,”
Proceedings of Second International Conference on Quality Assurance and Standards
, NAFEMS, Stratford upon-Avon, England, UK, May 22–25, pp.
1
12
.
27.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,”
Ph.D. thesis
,
Oxford University
,
Oxford, UK
.https://people.maths.ox.ac.uk/gilesm/files/pierre_thesis.pdf
28.
Amirante
,
D.
, and
Hills
,
N. J.
,
2015
, “
Large-Eddy Simulations of Wall Bounded Turbulent Flows Using Unstructured Linear Reconstruction Techniques
,”
ASME J. Turbomach.
,
137
(
5
), p.
051006
.10.1115/1.4028549
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.