Abstract

Foreign matter ingestion into a jet engine is a significant hazard to the safety of aircraft. While soft body ingestions (i.e., bird or ice ingestions) have been extensively researched, the threat posed by uncrewed aircraft systems (UASs) is a more recent concern due to their recent rise in popularity and has not been thoroughly studied. To better understand the damage caused by UAS ingestions, it is crucial to examine the resulting ingestion damage in comparison to birds of similar mass. This analysis is an essential initial step in determining how previous knowledge regarding soft body ingestions can relate to this new threat. To properly analyze these ingestions, development of a model that accurately represents a fan assembly is essential. This model should include a fan, as well as representative boundary conditions for the ingestion, such as blade retention systems, nose cone, casing, and shaft. Items that are analyzed during the ingestion include the overall damage to the fan blades, average and peak forces imparted on the retention systems, impact loads with the casing, and transient loads due to impact on the shaft. The foreign object models used were experimentally validated at their nominal sizes to increase confidence in the results. Comparison of the effects of ingestion of UAS and birds of difference mass into the representative fan model are presented and discussed to gain a better understanding of the differences between soft and hard body ingestion.

References

1.
NTSB
,
2009
, “
Loss of Thrust in Both Engines After Encountering a Flock of Birds and Subsequent Ditching on the Hudson River, U.S. Airways Flight 1549, Airbus A320 214, N106 US, Weehawken, New Jersey, January 15, 2009
,” National Transportation Safety Board, Weehawken, NJ, Report No.
NTSB/AAR-10/03
.https://i2.cdn.turner.com/cnn/2016/images/09/07/flight.1548.ntsb..pdf
2.
Michael
,
R.
,
1986
, “
Keep Your Eye on the Birdie: Aircraft Engine Bird Ingestion
,”
J. Air Law Commer.
,
51
(
4
), pp.
1007
1036
.https://scholar.smu.edu/jalc/vol51/iss4/8?utm_source=scholar.smu.edu%2Fjalc%2Fvol51%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
3.
Howard
,
S.
,
Hammer
,
J.
,
Carney
,
K.
, and
Pereira
,
J.
,
2013
, “
Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades
,”
ASME
Paper No. GT2013-95998.10.1115/GT2013-95998
4.
Metz
,
I.
,
Joost
,
E.
,
Thorsten
,
M.
,
Dirk
,
K.
, and
Jacco
,
H.
,
2020
, “
The Bird Strike Challenge
,”
Collect. Air Transp.-Oper. Manage.
,
7
(
3
), p.
26
.10.3390/aerospace7030026
5.
Avrenli
,
K.
, and
Dempsey
,
B.
,
2014
, “
Bird Strikes Resulting in Engine Failure
,”
Stat. Anal. Aircr.
,
2449
, pp.
1
7
.10.3141/2449-02
6.
Lakshman
,
N.
,
Raj
,
R.
, and
Mukkamala
,
Y.
,
2014
, “
Bird Strike Analysis of Jet Engine Fan Blade
,”
IEEE Aerospace Conference
, Big Sky, MT, Mar. 1–8.10.1109/AERO.2014.6836249
7.
Liu
,
M.
, and
Liu
,
G.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.10.1007/s11831-010-9040-7
8.
LS-DYNA Aerospace Working Group
,
2013
,
LS-DYNA Aerospace Working Group Modeling Guidelines Document
, LS-DYNA Aerospace Working Group, Livermore, CA.
9.
FAA
,
2024
, “
Code of Federal Regulations: Aeronautics and Space
,” Federal Aviation Administration, Washington, DC, accessed Oct. 3, 2024, https://www.ecfr.gov/current/title-14
10.
Song
,
Y.
,
Horton
,
B.
, and
Bayandor
,
J.
,
2017
, “
Investigation of UAS Ingestion Into High-Bypass Engines, Part 1: Bird versus Drone
,”
AIAA
Paper No. 2017-0186.10.2514/6.2017-0186
11.
Elnasr
,
O.
, and
El-Salamony
,
M.
,
2022
, “
Parametric Study of Boundary Layer Ingestion Propeller Position on UAV Wings
,” Fourth Novel Intelligent and Leading Emerging Sciences Conference (
NILES
), Giza, Egypt, Oct.
22
24
.10.1109/NILES56402.2022.9942428
12.
Liu
,
H.
,
Man
,
M.
, and
Low
,
K.
,
2021
, “
UAV Airborne Collision to Manned Aircraft Engine: Damage of Fan Blades and Resultant Thrust Loss
,”
Aerosp. Sci. Technol.
,
113
, p.
106645
.10.1016/j.ast.2021.106645
13.
D'Souza
,
K.
,
Lyons
,
T.
,
Lacy
,
T.
, and
Kota
,
K.
,
2017
, “
Volume IV—UAS Airborne Collision Severity Evaluation—Engine Ingestion
,” Federal Aviation Administration, Washington, DC, Report.
14.
Lyons
,
T.
, and
D'Souza
,
K.
,
2019
, “
Parametric Study of a Unmanned Aerial Vehicle Ingestion Into a Business Jet Size Fan Assembly Model
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071002
.10.1115/1.4042286
15.
Olivares
,
G.
,
Gomez
,
L.
,
Monteros
,
J.
,
Baldridge
,
R.
,
Zinzuwadia
,
C.
, and
Aldag
,
T.
,
2017
, “
Volume II—UAS Airborne Collision Severity Evaluation—Quadcopter
,” Federal Aviation Administration, Washington, DC, Report.
16.
Lyons
,
T.
,
Sirivolu
,
D.
, and
D'Souza
,
K.
,
2022
, “
Stress State Characterization for a Generic Titanium Fan During Bird Ingestion
,”
AIAA J.
,
60
(
9
), pp.
5436
5447
.10.2514/1.J061712
17.
Olivares
,
G.
,
Gomez
,
L.
,
Marco
,
R.
,
Ly
,
H.
,
Calderon del Rey
,
J.
,
Duling
,
C.
,
Zwiener
,
M.
, and
Perrin
,
Z.
,
2022
, “
Volume VI—UAS Airborne Collision Severity Evaluation—14 CFR Part 29 Rotorcraft
,” Federal Aviation Administration, Washington, DC, Report.
18.
D'Souza
,
K.
,
Sirivolu
,
D.
,
Wong
,
M.
, and
Kurstak
,
E.
,
2023
, “
Annex A to Task A17: OSU Representative Fan Model and UAS Ingestion Studies
,” Federal Aviation Administration, Washington, DC, Report.
19.
Ly
,
H.
,
Olivares
,
G.
,
Gomez
,
L.
,
Castillo
,
L.
,
Arboleda
,
G.
, and
de Abreu
,
A.
,
2023
, “
Annex B to Task A17: NIAR/WSU sUAS Numerical Model Validation (Component and Full-Scale Level) for Engine Ingestion Analysis
,” Federal Aviation Administration, Washington, DC, Report.
20.
Duling
,
C.
,
Zweiner
,
M.
, and
Arteburn
,
D.
,
2023
, “
Annex C to Task A17: Airborne Collision Severity Evaluation—Engine Ingest Test Report
,” Federal Aviation Administration, Washington, DC, Report.
21.
D'Souza
,
K.
,
Wong
,
M.
,
Sirivolu
,
D.
,
Perrin
,
Z.
,
Zwiener
,
M.
,
Duling
,
C.
,
Gomez
,
L.
, and
Olivares
,
G.
,
2024
, “
Experimental Validation of a UAS at Engine Ingestion Conditions: Part I Experiments
,”
Aerosp. Sci. Technol.
,
150
, p.
109178
.10.1016/j.ast.2024.109178
22.
D'Souza
,
K.
,
Wong
,
M.
,
Sirivolu
,
D.
,
Gomez
,
L.
,
Olivares
,
G.
,
Perrin
,
Z.
,
Zwiener
,
M.
, and
Duling
,
C.
,
2024
, “
Experimental Validation of a UAS at Engine Ingestion Conditions: Part 2 Model Validation
,”
Aerosp. Sci. Technol.
,
150
, p.
109179
.10.1016/j.ast.2024.109179
23.
Hedayati
,
R.
, and
Sadighi
,
M.
,
2015
,
Bird Strike: An Experimental, Theoretical and Numercial Investigation
,
Woodhead Publishing
, New York.
24.
LS-DYNA Aerospace Working Group
,
2023
, “
LS-DYNA Aerospace Working Group (AWG) Website
,” LS-DYNA Aerospace Working Group, Livermore, CA, accessed Jan. 1, 2023, https://awg.ansys.com/Welcome
25.
Haight
,
S.
,
Wang
,
L.
,
Du Bois
,
P.
,
Carney
,
K.
, and
Kan
,
C.
,
2016
, “
Development of a Titanium Alloy Ti-6Al-4V Material Model Used in LS-DYNA
,” Federal Aviation Administration, Washington, DC, Report No.
DOT/FAA/TC-15/23
.https://rosap.ntl.bts.gov/view/dot/57630
26.
Livermore Software Technology Corporation
,
2016
, LS-DYNA Keyword User's Manual, Vol.
2
, LSTC, Livermore, CA.
27.
Lyons
,
T.
, and
D'Souza
,
K.
,
2020
, “
Investigation of Mesh Regularization in MAT 224 for Subsequent Use in Impact Simulations
,”
LS-DYNA Conference
, Detroit, MI, June
10
11
.https://www.dynalook.com/conferences/16thinternational-ls-dyna-conference/aerospace-t9-1/t9-1-d-aerospace-041.pdf
28.
Johnson
,
G.
, and
Cook
,
W.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Seventh International Symposium on Ballistics
, Hague, The Netherlands, Apr.
19
21
.
29.
Johnson
,
G.
, and
Cook
,
W.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strain, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
30.
LS-DYNA Aerospace Working Group
,
2021
, LS-DYNA Aerospace Working Group Mat 224 User Guide, LS-DYNA Aerospace Working Group, Livermore, CA.
31.
D'Souza
,
K.
,
Sirivolu
,
D.
,
Gomez
,
L.
, and
Olivares
,
G.
,
2024
, “
Damage to a High Bypass Ratio Fan During UAS Ingestions
,”
ASME J. Eng. Gas Turbines Power
, 146(
12
), p.
121011
.10.1115/1.4066161
You do not currently have access to this content.