Abstract

This study aims to establish fundamental steps for developing an optimal methodology to enhance experimental probe calibration. Multihole pressure probes have been extensively used to study the airflow around airfoils, wings, and other surfaces in the field of fluid dynamics. Five-hole probes are broadly used in wind tunnel testing and aerodynamic survey to collect data on velocity, pressure distribution, and flow characteristics. These measurements help in understanding the aerodynamic performance of aircrafts, planes, and aerospace vehicles to improve efficiency and lower environmental costs; however, the calibration process for these probes conventionally demands considerable effort, time, and cost. The purpose of this study is to leverage advanced instrumentation and measurement techniques to ensure optimal calibration of probes, thereby minimizing data uncertainty and maximizing accuracy. The automated calibration facility for data acquisition ensures 0.2–0.9 repeatability coefficients. A computational study suggested an optimal stand-off distance (SOD) from a calibration jet nozzle to read accurate measurements by investigating the flow field around the probe surface and nozzle. To shorten calibration time, experiments for finding an optimized measurement incremental step were implemented and examined by comparing the uncertainty. Experimental calibration maps were generated using nondimensional pressure coefficients to describe flow characteristics within predetermined flow conditions. The experimental calibration map was assessed by quantitative comparison and compared to a high-resolution numerical calibration map. This methodology is expected to facilitate exploration of numerical and experimental calibrations in subsonic flow regimes by obtaining great insight into advanced calibration from the present study.

References

1.
Hall
,
B. F.
, and
Povey
,
T.
,
2017
, “
The Oxford Probe: An Open Access Five-Hole Probe for Aerodynamic Measurements
,”
Meas. Sci. Technol.
,
28
(
3
), p.
035004
.10.1088/1361-6501/aa53a8
2.
Passmann
,
M.
,
Aus der Wiesche
,
S.
,
Povey
,
T.
, and
Bergmann
,
D.
,
2021
, “
Effect of Reynolds Number on Five-Hole Probe Performance: Experimental Study of the Open-Access Oxford Probe
,”
ASME J. Turbomach.
,
143
(
9
), p.
091003
.10.1115/1.4050597
3.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1979
, “
The Calibration and Application of Five-Hole Probes
,”
ISA Trans.
,
18
(
3
), pp.
23
34
.
4.
Reichert
,
B. A.
, and
Wendt
,
B. J.
,
1994
, “
A New Algorithm for Five-Hole Probe Calibration, Data Reduction, and Uncertainty Analysis
,”
NASA Lewis Research Center
,
Cleveland, OH
, Report No. NASA Technical Memorandum 106458.
5.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9
), p.
091001
.10.1115/1.4050452
6.
Morrison
,
G. L.
,
Schobeiri
,
M. T.
, and
Pappu
,
K. R.
,
1998
, “
Five-Hole Pressure Probe Analysis Technique
,”
Flow Meas. Instrum.
,
9
(
3
), pp.
153
158
.10.1016/S0955-5986(98)00023-5
7.
Dudzinski
,
T. J.
, and
Krause
,
L. N.
,
1969
, “
Flow-Direction Measurement With Fixed-Position Probes
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA TM X-1904.
8.
Pisasale
,
A. J.
, and
Ahmed
,
N. A.
,
2002
, “A Novel Method for Extending the Calibration Range of Five-Hole Probe for Highly Three-Dimensional Flows,”
Flow Meas. Instrum.
, 13(1–2), pp.
23
30
.10.1016/S0955 5986(02)00011-0
9.
Telionis
,
D.
,
Yang
,
Y.
, and
Rediniotis
,
O.
,
2009
,
Recent Developments in Multi-Hole Probe (MHP) Technology
, 20th International Congress of Mechanical Engineering, Vol.
21
,
ABCM
, Gramado, RS, Brazil.https://abcm.org.br/anais/cobem/2009/pdf/COB09?3415.pdf
10.
Yasa
,
T.
, and
Paniagua
,
G.
,
2012
, “
Robust Procedure for Multi-Hole Probe Data Processing
,”
Flow Meas. Instrum.
,
26
, pp.
46
54
.10.1016/j.flowmeasinst.2012.03.004
11.
Schäffer
,
C.
,
Speck
,
K.
, and
Gümmer
,
V.
,
2022
, “
Numerical Calibration and Investigation of the Influence of Reynolds Number on Measurements With Five-Hole Probes in Compressible Flows
,”
ASME J. Turbomach.
,
144
(
9
), p.
091010
.10.1115/1.4053835
12.
Milanovic
,
I. M.
, and
Kalkhoran
,
I. M.
,
2000
, “
Numerical Calibration of a Conical Five-Hole Probe for Supersonic Measurements
,”
Meas. Sci. Technol.
,
11
(
12
), pp.
1812
1818
.10.1088/0957-0233/11/12/322
13.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lo
,
S.
,
Lowndes
,
I. S.
, and
Azzopardi
,
B. J.
,
2015
, “
Comparison of Experimental and Computational Fluid Dynamics (CFD) Studies of Slug Flow in a Vertical Riser
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
468
483
.10.1016/j.expthermflusci.2015.06.004
14.
Harrison
,
M. E.
,
Batten
,
W. M. J.
,
Myers
,
L. E.
, and
Bahaj
,
A. S.
,
2010
, “
Comparison Between CFD Simulations and Experiments for Predicting the Far Wake of Horizontal Axis Tidal Turbines
,”
IET Renewable Power Gener.
,
4
(
6
), pp.
613
627
.10.1049/iet-rpg.2009.0193
15.
Jeong
,
D.
, and
Guimaraes
,
T.
,
2024
, “
Development of a High-Resolution Computational Model for Investigating the Flow Around and Inside Traditional Five-Hole Probes
,”
AIAA
Paper No. 2024-2835.10.2514/6.2024-2835
16.
TSI Alnor Instruments
, 2013, “
TSI ALNOR Velometer Thermal Anemometers (Models AVM410, AVM430, and AVM440) Specification
,” TSI Alnor Instruments, Shoreview, MN, https://tsi.com/getmedia/ecd81c65-2c6b-4d34-9051-c85c4250a367/AVM410-430-440_US_2980555-web?ext=.pdf
17.
TSI Alnor Instruments,
2022, “
TSI ALNOR Air Velocity Meter AVM 440 Manual
,” TSI Alnor Instruments, Shoreview, MN, https://tsi.com/getmedia/c33009ad-e055-482e-8a03-d45103a7c2ec/AVM440A-TA440A-Op_Svc_Mnl_1980584?ext=.pdf
18.
Dodge Engineering & Controls, Inc.
, 2015, “
Dodge Engineering & Controls Inc. Non-Spring Return Electronic Actuators Manual
,” Dodge Engineering & Controls, Chelmsford, MA, https://www.deicontrols.com/wp-content/uploads/2015/04/05-EN132B2-EN132B2-ZS-S-EN221B2-S-EN221B2-ZS-S-EN310B2-S-EN310B2-ZS-S-Non-Spring-Return-24-VAC-Modulating-Actuators.pdf
19.
Scanivalve
, 2023, “
DSA 3217 Pressure Scanner Manual
,” Scanivalve, Liberty Lake, WA, https://scanivalve.com/wp-content/uploads/2023/03/DSAPTPv201.pdf
20.
Scanivalve
, 2016, “
Low Pressure Reference Discipline—Static Basket
,” Scanivalve, Liberty Lake, WA, https://scanivalve.com/media/5385/lowrefdisciplinepaper_12-16-10.pdf
21.
Velmex, Inc.
, 2020, “
VXM PK245-01AA Manual—Stepper Motor 1 for Yaw Positioning
,” Velmex, Ontario, NY, https://velmex.com/Downloads/OEM-Spec_Charts/PK245-01AA_StepperMotor.pdf
22.
Velmex, Inc.
, 2020, “
VXM PK266-03A Manual—Stepper Motor 2 for Pitch Positioning
,” Velmex, NY, https://velmex.com/Downloads/OEM-Spec_Charts/PK266-03A_StepperMotor.pdf
23.
Morrison
,
E. S. S.
,
2013
, “
Development of a Three Dimensional Compressible Flow Calibration Facility for Thermal Anemometry
,” Ph.D. thesis,
Purdue University
,
West Lafayette, IN
.
24.
Bridges
,
J.
, and
Wernet
,
M. P.
,
2010
, “
Establishing Consensus Turbulence Statistics for Hot Subsonic Jets
,”
AIAA
Paper No. 2010-3751.10.2514/6.2010-3751
25.
Bridges
,
J.
, and
Wernet
,
M. P.
,
2011
, “
The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset
,”
NASA Glenn Research Center
,
Cleveland, OH
, Report No. NASA/TM—2011-216807.
26.
Adam
,
N. M.
,
Attia
,
O. H.
,
Al-Sulttani
,
A. O.
,
Mahmood
,
H. A.
,
As'arry
,
A.
, and
Rezali
,
K. A. M.
,
2020
, “
Numerical Analysis for Solar Panel Subjected With an External Force to Overcome Adhesive Force in Desert Areas
,”
CFD Lett.
,
12
(
9
), pp.
60
75
.10.37934/cfdl.12.9.6075
27.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.93-2906
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
29.
Djeridane
,
T.
,
Amielh
,
M.
,
Anselmet
,
F.
, and
Fulachier
,
L.
,
1996
, “
Velocity Turbulence Properties in the Near‐Field Region of Axisymmetric Variable Density Jets
,”
Phys. Fluids
,
8
(
6
), pp.
1614
1630
.10.1063/1.868935
30.
Wood
,
A.
,
2023
, “
Probe Calibration for Aerodynamic Measurements
,” MS thesis,
University of Cambridge
,
Cambridge, MA
.
You do not currently have access to this content.