Graphical Abstract Figure

Effect of H2O vitiation in the shear layer of a cavity flameholder on forced ignition limits

Graphical Abstract Figure

Effect of H2O vitiation in the shear layer of a cavity flameholder on forced ignition limits

Close modal

Abstract

Reliable ignition and flame stabilization are critical challenges in scramjet combustors, particularly under high-speed flow conditions. Forced ignition techniques, such as micro-rocket torches, have been investigated as alternatives to plasma jet (PJ) torches owing to their ability to inject high-temperature gases and active radicals directly into the combustion region. However, previous studies have primarily relied on ground experiments utilizing hydrogen combustion vitiated heaters, where H2O in vitiated air significantly affects ignition characteristics. To address this, this study examined the impact of H2O vitiation on forced ignition using a micro-rocket torch in a scramjet combustor with a cavity flame holder. A numerical analysis was conducted by combining the forced ignition model (FIM) in the shear layer (FIMS) with a plug flow reactor (PFR) model to investigate ignition phenomena in the shear layer. The model was validated using previous combustion experimental data, demonstrating that the forced ignition limits could be accurately predicted based on the Damköhler number (Da). The results revealed that H2O vitiation altered the radical recombination processes and increased the ignition delay time, thereby shifting the ignition location upstream. Moreover, its impact was more significant in cavity configurations with shorter residence times, such as Type A cavities. Additionally, increasing the net input energy of the micro-rocket torch from 15 kW to 30 kW lowered the forced ignition limit temperature, mitigating the H2O vitiation effects. These findings emphasize the necessity of considering vitiation effects when applying ground test data to flight conditions.

References

1.
Takita
,
K.
,
Ohashi
,
R.
, and
Abe
,
N.
,
2009
, “
Suitability of C2-, C3-Hydrocarbon Fuels for Plasma Ignition in High-Speed Flow
,”
J. Propul. Power
,
25
(
3
), pp.
565
570
.10.2514/1.38906
2.
Kobayashi
,
K.
,
Tomioka
,
S.
, and
Mitani
,
T.
,
2004
, “
Supersonic Flow Ignition by Plasma Torch and H2/O2 Torch
,”
J. Propul. Power
,
20
(
2
), pp.
294
301
.10.2514/1.1760
3.
Brieschenk
,
S.
,
Kleine
,
H.
, and
O'Byrne
,
S.
,
2013
, “
Laser Ignition of Hypersonic Air–Hydrogen Flow
,”
Shock Waves
,
23
(
5
), pp.
439
452
.10.1007/s00193-013-0447-6
4.
Ombrello
,
T. M.
,
Carter
,
C. D.
,
Tam
,
C.-J.
, and
Hsu
,
K.-Y.
,
2015
, “
Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2101
2108
.10.1016/j.proci.2014.07.068
5.
Gruber
,
M. R.
,
Donbar
,
J. M.
,
Carter
,
C. D.
, and
Hsu
,
K.-Y.
,
2004
, “
Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow
,”
J. Propul. Power
,
20
(
5
), pp.
769
778
.10.2514/1.5360
6.
Micka
,
D. J.
, and
Driscoll
,
J. F.
,
2009
, “
Combustion Characteristics of a Dual-Mode Scramjet Combustor With Cavity Flameholder
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2397
2404
.10.1016/j.proci.2008.06.192
7.
Sun
,
M. B.
,
Gong
,
C.
,
Zhang
,
S. P.
,
Liang
,
J. H.
,
Liu
,
W. D.
, and
Wang
,
Z. G.
,
2012
, “
Spark Ignition Process in a Scramjet Combustor Fueled by Hydrogen and Equipped With Multi-Cavities at Mach 4 Flight Condition
,”
Exp. Therm. Fluid Sci.
,
43
, pp.
90
96
.10.1016/j.expthermflusci.2012.03.028
8.
Sato
,
Y.
,
Sayama
,
M.
,
Ohwaki
,
K.
,
Masuya
,
G.
,
Komuro
,
T.
,
Kudou
,
K.
,
Murakami
,
A.
, et al.,
1992
, “
Effectiveness of Plasma Torches for Ignition and Flameholding in Scramjet
,”
J. Propul. Power
,
8
(
4
), pp.
883
889
.10.2514/3.23565
9.
Mitani
,
T.
,
1995
, “
Ignition Problems in Scramjet Testing
,”
Combust. Flame
,
101
(
3
), pp.
347
359
.10.1016/0010-2180(94)00218-H
10.
Yamaguchi
,
T.
,
Hizawa
,
T.
,
Ichikawa
,
T.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Total Temperature Estimation of a Hydrogen/Air Burned-Gas Torch Igniter for a Scramjet Combustor
,”
J. Therm. Sci. Technol.
,
13
(
2
), p.
JTST0030
.10.1299/jtst.2018jtst0030
11.
Ogawa
,
S.
,
Kobayashi
,
K.
, and
Tomioka
,
S.
,
2022
, “
Study on the Ignition Method for n-Octane Pyrolysis Fuel in a Scramjet Engine
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
65
(
1
), pp.
33
43
.10.2322/tjsass.65.33
12.
Ogawa
,
S.
,
Kobayashi
,
K.
, and
Tomioka
,
S.
,
2024
, “
Forced Ignition Modeling of Methane-Ethylene Mixtures in Scramjet Combustors
,”
Combust. Flame
,
263
, p.
113383
.10.1016/j.combustflame.2024.113383
13.
Ben-Yakar
,
A.
, and
Hanson
,
R. K.
,
2001
, “
Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview
,”
J. Propul. Power
,
17
(
4
), pp.
869
877
.10.2514/2.5818
14.
Barnes
,
F. W.
, and
Segal
,
C.
,
2015
, “
Cavity-Based Flameholding for Chemically-Reacting Supersonic Flows
,”
Prog. Aerosp. Sci.
,
76
, pp.
24
41
.10.1016/j.paerosci.2015.04.002
15.
Wang
,
H.
,
Wang
,
Z.
,
Sun
,
M.
, and
Qin
,
N.
,
2015
, “
Large Eddy Simulation of a Hydrogen-Fueled Scramjet Combustor With Dual Cavity
,”
Acta Astronaut.
,
108
, pp.
119
128
.10.1016/j.actaastro.2014.12.008
16.
Takahashi
,
M.
,
Kobayashi
,
K.
, and
Tomioka
,
S.
,
2023
, “
Combustion Characteristics of a Supersonic Combustor Model for a JAXA Flight Experiment
,”
CEAS Space J.
,
15
(
6
), pp.
827
844
.10.1007/s12567-023-00502-2
17.
Driscoll
,
J. F.
, and
Rasmussen
,
C. C.
,
2005
, “
Correlation and Analysis of Blowout Limits of Flames in High-Speed Airflows
,”
J. Propul. Power
,
21
(
6
), pp.
1035
1044
.10.2514/1.13329
18.
Ogawa
,
S.
,
Kobayashi
,
K.
, and
Tomioka
,
S.
,
2023
, “
An Experimental Investigation on Forced Ignition Characteristics of Hydrocarbon Mixture Fuel in Scramjet Combustor
,”
Lect. Notes Electr. Eng.
,
913
, pp.
1381
1395
.10.1007/978-981-19-2635-8
19.
Tatman
,
B. J.
,
Rockwell
,
R. D.
,
Goyne
,
C. P.
,
McDaniel
,
J. C.
, and
Donohue
,
J. M.
,
2013
, “
Experimental Study of Vitiation Effects on Flameholding in a Cavity Flameholder
,”
J. Propul. Power
,
29
(
2
), pp.
417
423
.10.2514/1.B34687
20.
Tomioka
,
S.
,
Hiraiwa
,
T.
,
Kobayashi
,
K.
,
Izumikawa
,
M.
,
Kishida
,
T.
, and
Yamasaki
,
H.
,
2007
, “
Vitiation Effects on Scramjet Engine Performance in Mach 6 Flight Conditions
,”
J. Propul. Power
,
23
(
4
), pp.
789
796
.10.2514/1.28149
21.
Noda
,
J.
,
Ohkoshi
,
M.
,
Kouchi
,
T.
,
Masuya
,
G.
,
Tomioka
,
S.
,
Rockwell
,
R.
, and
Goyne
,
C.
,
2012
, “
Quasi-One Dimensional Modeling on Vitiation Effects for a Dual-Mode Combustor
,”
AIAA
Paper No. 2012-5862.10.2514/6.2012-5862
22.
Zheng
,
S.
,
Liu
,
H.
,
Li
,
Q.
,
Zhu
,
J.
,
Sun
,
M.
,
Zhou
,
B.
,
Sui
,
R.
, and
Lu
,
Q.
,
2022
, “
Effects of Radiation Reabsorption on the Laminar Flame Speed and NO Emission During Aviation Kerosene Combustion at Elevated Pressures
,”
Fuel
,
324
, p.
124545
.10.1016/j.fuel.2022.124545
23.
Fuller
,
C. C.
,
Gokulakrishnan
,
P.
,
Klassen
,
M. S.
,
Adusumilli
,
S.
,
Kochar
,
Y. N.
,
Bloomer
,
D. J.
,
Seitzman
,
J. M.
, et al.,
2012
, “
Effects of Vitiation and Pressure on Laminar Flame Speeds of n-Decane
,”
50th AIAA Aerospace Sciences Meeting
, Nashville, TN, Jan. 09--12, p.
167
.10.2514/6.2012-167
24.
Li
,
J.
,
Song
,
W.
,
Luo
,
F.
, and
Shi
,
D.
,
2014
, “
Experimental Investigation of Vitiation Effects on Supersonic Combustor Performance
,”
Acta Astronaut.
,
96
, pp.
296
302
.10.1016/j.actaastro.2013.11.016
25.
Yatsunami
,
T.
,
Mitani
,
T.
,
Kobayashi
,
K.
, and
Masuya
,
G.
,
2000
, “
Effects of Residual Radicals on Scramjet Engine Testing
,”
J. Jpn. Soc. Aeronaut. Space Sci.
,
48
(
563
), pp.
411
417
.10.2322/jjsass.48.411
26.
Mitani
,
T.
,
Hiraiwa
,
T.
,
Sato
,
S.
,
Tomioka
,
S.
,
Kanda
,
T.
,
Saito
,
T.
,
Sunami
,
T.
, et al.,
1996
, “
Scramjet Engine Testing in Mach 6 Vitiated Air
,”
Space Plane and Hypersonic Systems and Technology Conference
, Norfolk, VA, Nov. 18–22, pp.
1996
4555
.
27.
Slessor
,
M. D.
,
Zhuang
,
M.
, and
Dimotakis
,
P. E.
,
2000
, “
Turbulent Shear-Layer Mixing: Growth-Rate Compressibility Scaling
,”
J. Fluid Mech.
,
414
, pp.
35
45
.10.1017/S0022112099006977
28.
Kalt
,
P. A.
,
Al-Abdell
,
Y. M.
,
Masri
,
A. R.
, and
Barlow
,
R. S.
,
2002
, “
Swirling Turbulent Non-Premixed Flames of Methane: Flow Field and Compositional Structure
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1913
1919
.10.1016/S1540-7489(02)80232-2
29.
Papamoschou
,
D.
,
1993
, “
Model for Entropy Production and Pressure Variation in Confined Turbulent Mixing
,”
AIAA J.
,
31
(
9
), pp.
1643
1650
.10.2514/3.11826
30.
Goodwing
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2021
, “
Cantera 2.6.0
,” NumFOCUS, Austin, TX, accessed May 1, 2022, https://cantera.org
31.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed May 1, 2022, https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm
32.
Ogawa
,
S.
,
Nojima
,
K.
,
Kobayashi
,
K.
, and
Tomioka
,
S.
,
2018
, “
Influence on Ignition Characteristic by the Difference of Methane/Ethylene Mixture Gas Rate
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
, July 9–11, pp.
2018
4777
.
33.
Zhang
,
X.
,
Rona
,
A.
, and
Edwards
,
J. A.
,
1998
, “
The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer
,”
Aeronaut. J.
,
102
(
1013
), pp.
129
136
.10.1017/S0001924000065416
34.
Kim
,
K. M.
,
Baek
,
S. W.
, and
Han
,
C. Y.
,
2004
, “
Numerical Study on Supersonic Combustion With Cavity-Based Fuel Injection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
271
286
.10.1016/j.ijheatmasstransfer.2003.07.004
35.
Fotia
,
M. L.
, and
Driscoll
,
J. F.
,
2013
, “
Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet Experiment
,”
J. Propul. Power
,
29
(
1
), pp.
261
273
.10.2514/1.B34486
36.
Owens
,
M. G.
,
Tehranian
,
S.
,
Segal
,
C.
, and
Vinogradov
,
V. A.
,
1998
, “
Flame-Holding Configurations for Kerosene Combustion in a Mach 1.8 Airflow
,”
J. Propul. Power
,
14
(
4
), pp.
456
461
.10.2514/2.5322
37.
Jackson
,
K. R.
,
Gruber
,
M. R.
, and
Buccellato
,
S.
,
2015
, “
Mach 6–8+ Hydrocarbon-Fueled Scramjet Flight Experiment: The HIFiRE Flight 2 Project
,”
J. Propul. Power
,
31
(
1
), pp.
36
53
.10.2514/1.B35350
38.
Vaden
,
S.
,
Debes
,
R.
,
Lash
,
E. L.
,
Burk
,
R.
,
Boyd
,
C. M.
,
Wilson
,
L.
, and
Pellett
,
G.
,
2009
, “
Unsteady Extinction of Opposed Jet Ethylene / Methane HiFIRE Surrogate Fuel Mixtures vs. Air
,”
AIAA
Paper No. 2009-4883.10.2514/6.2009-4883
39.
Colket
,
M. B.
, and
Spadaccini
,
L. J.
,
2001
, “
Scramjet Fuels Autoignition Study
,”
J. Propul. Power
,
17
(
2
), pp.
315
323
.10.2514/2.5744
40.
Davidson
,
D. F.
,
Ranganath
,
S. C.
,
Lam
,
K.-Y.
,
Liaw
,
M.
,
Hong
,
Z.
, and
Hanson
,
R. K.
,
2010
, “
Ignition Delay Time Measurements of Normal Alkanes and Simple Oxygenates
,”
J. Propul. Power
,
26
(
2
), pp.
280
287
.10.2514/1.44034
41.
Gordon
,
S.
, and
McBride
,
B. J.
,
1976
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations
,”
NASA
, Washington, DC, Report No. NASA-SP-273.
You do not currently have access to this content.