Abstract

Adiabatic effectiveness, as a primary indicator of film cooling performance, still suffers from the disputable measurement principle in transonic flow. The two transient thermal measurement techniques in the state-of-the-art linear regression method and dual linear regression technique (DLRT), produce different results, due to their distinct treatment of local recovery temperature. As the first-of-its-kind work to resolve this controversy, this paper established a criterion for judging the two methods based on the similarity principle, then evaluated the correctness of the two methods through transient thermal measurements for transonic flow over a flat plate. During heat transfer experiments, relevant dimensionless numbers (Mach number, Reynolds number, Prandtl number of the mainstream, blowing ratio, momentum ratio, and temperature ratio between coolant and mainstream) were all fixed. Only the values of mainstream and coolant temperature varied by 8 K and 14 K, respectively, so according to the judging criterion, adiabatic effectiveness should be invariant. It is found that adiabatic effectiveness obtained by linear regression method is indeed roughly unaltered at different mainstream and coolant temperatures, when the coolant-to-mainstream temperature ratio is fixed. However, results measured by the dual linear regression technique display noticeable variation (by a maximum of 0.3) under the same circumstances. This is because the assumption of this technique conflicts with the similarity principle. Therefore, the linear regression method aligns much better with the judging criterion based on the similarity principle than the dual linear regression technique and is hence recommended to measure adiabatic effectiveness in transonic flow.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
11
), p.
113001
.10.1115/1.4039644
2.
Luque
,
S.
,
Jones
,
T. V.
, and
Povey
,
T.
,
2016
, “
Theory for the Scaling of Metal Temperatures in Cooled Compressible Flows
,”
Int. J. Heat Mass Transfer
,
102
, pp.
331
340
.10.1016/j.ijheatmasstransfer.2016.06.025
3.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.-Trans. ASME
,
127
(
2
), pp.
297
305
.10.1115/1.1811099
4.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side holes - Part I: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.-Trans. ASME
,
127
(
2
), pp.
270
277
.10.1115/1.1812320
5.
Gao
,
Z. H.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,”
ASME
Paper No. IMECE2005-80146.10.1115/IMECE2005-80146
6.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.10.1115/1.2103094
7.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
CRC Press
,
New York
.
8.
Fox
,
D. W.
,
Furgeson
,
M.
,
Flachs
,
E. M.
, and
Bogard
,
D. G.
, “
Experimental Study of Compressible Film Cooling Scaling and Hole Geometry
,”
ASME
Paper No. GT2023-104038.10.1115/GT2023-104038
9.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.10.1115/1.4035175
10.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.10.1115/1.4029098
11.
Fox
,
D. W.
,
Furgeson
,
M.
, and
Bogard
,
D. G.
,
2024
, “
Considerations for Compressible Film Cooling: A Computational Study of the Effects of Transonic Flows and Varying Mainstream Mach Number
,”
ASME J. Turbomach.
,
146
(
12
), p.
121002
.10.1115/1.4065776
12.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178.10.1115/GT2002-30178
13.
Collopy
,
H.
,
Ligrani
,
P. M.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2022
, “
Transonic Turbine Blade Tip Heat Transfer With Pressure Side Film Cooling
,”
J. Thermophys. Heat Transfer
,
36
(
3
), pp.
720
733
.10.2514/1.T6328
14.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.10.1115/1.4006537
15.
Liu
,
C.
,
Zhu
,
H. R.
,
Fu
,
Z. Y.
, and
Xu
,
R. H.
,
2015
, “
The Effects of Inlet Reynolds Number, Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade
,”
ASME
Paper No. GT2015-42888.10.1115/GT2015-42888
16.
Bai
,
B.
,
Li
,
Z. Y.
,
Hao
,
M. Y.
,
Li
,
Y. Y.
,
Zhang
,
K. Y.
,
Li
,
Z. G.
, and
Li
,
J.
,
2023
, “
Turbine Blade Endwall Heat Transfer and Film Cooling Performance With Multigap Jets and Film Holes
,”
ASME J. Eng. Gas Turbines Power-Trans. ASME
,
145
(
11
), p.
111020
.10.1115/1.4063373
17.
Galeotti
,
S.
,
Bacci
,
T.
,
Picchi
,
A.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2024
, “
Heat Transfer Coefficient and Adiabatic Effectiveness Measurements on a Nozzle Guide Vane With a Single Row of Cylindrical Holes
,”
ASME J. Turbomach.-Trans. ASME
,
146
(
5
), p.
051010
.10.1115/1.4064315
18.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.-Trans. ASME
,
138
(
10
), p.
101007
.10.1115/1.4032925
19.
Ma
,
H.
,
Zeng
,
W.
,
Dai
,
S.
, and
Jiang
,
H.
,
2022
, “
Sensitivity of Adiabatic Cooling Effectiveness to Mainstream and Coolant Temperatures in Transonic Flow Over an Idealized Blade Tip Model
,”
ASME J. Turbomach.
,
144
(
11
), p.
111013
.10.1115/1.4055268
20.
Baldauf
,
S.
, and
Scheurlen
,
M.
,
2015
, “
CFD Based Sensitivity Study of Flow Parameters for Engine Like Film Cooling Conditions
,”
ASME
Paper No. 96-GT-310.10.1115/96-GT-310
21.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.-Trans. ASME
,
136
(
10
), p.
101006
.10.1115/1.4028001
22.
Ornano
,
F.
, and
Povey
,
T.
,
2020
, “
Theory of Non-Dimensional Groups in Film Effectiveness Studies
,”
ASME J. Turbomach.-Trans. ASME
,
142
(
4
), p.
041002
.10.1115/1.4046277
23.
Luque
,
S.
,
Jones
,
T. V.
, and
Povey
,
T.
,
2017
, “
Scaling of Turbine Metal Temperatures in Cooled Compressible Flows—Experimental Demonstration of a New Theory
,”
ASME J. Turbomach.
,
139
(
8
), p.
081001
.10.1115/1.4035831
24.
Ma
,
H.
,
Wang
,
Z.
,
Wang
,
L.
,
Zhang
,
Q.
,
Yang
,
Z.
, and
Bao
,
Y.
,
2016
, “
Ramp Heating in High-Speed Transient Thermal Measurement With Reduced Uncertainty
,”
J. Propul. Power
,
32
(
5
), pp.
1190
1198
.10.2514/1.B35803
25.
Ma
,
H.
,
Zeng
,
W.
,
Jiang
,
H.
, and
Hong
,
J.
,
2022
, “
Impact of Cooling Injection on Shock Wave Over a Flat Tip in High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
1
), p.
011012
.10.1115/1.4052135
26.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
, 144(12), p.
121003
.10.1115/1.4055271
27.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2013
, “
NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 8.0
,” NIST Standard Reference Database 23.
28.
Hossain
,
M. A.
,
Asar
,
M. E.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2020
, “
Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
142
(
4
), p.
041009
.10.1115/1.4046548
29.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.10.1115/1.2752188
30.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
31.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.10.1115/1.4002949
32.
Smith
,
D.
,
Bubb
,
J.
,
Popp
,
O.
,
Grabowski
,
H.
, III
,
Diller
,
T.
,
Schetz
,
J.
, and
Ng
,
W.
,
2014
, “
An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade: Part I—Steady Heat Transfer
,”
ASME
Paper No. 2000-GT-0202.10.1115/2000-GT-0202
33.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
34.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Shock Wave–Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
(
4
), pp.
788
797
.10.1115/1.1397305
35.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.-Trans. ASME
,
120
(
3
), pp.
549
556
.10.1115/1.2841752
36.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.-Trans. ASME
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
37.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.-Trans. ASME
,
139
(
4
), p.
041003
.10.1115/1.4035044
38.
Zhou
,
W. W.
,
Johnson
,
B.
, and
Hu
,
H.
,
2017
, “
Effects of Flow Compressibility and Density Ratio on Film Cooling Performance
,”
J. Propul. Power
,
33
(
4
), pp.
964
974
.10.2514/1.B36275
39.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. R.
,
2015
,
Fluid Mechanics
,
Academic Press
, San Diego, CA.
40.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.-Trans. ASME
,
123
(
2
), pp.
231
237
.10.1115/1.1343457
41.
Liu
,
C.
,
Xie
,
G.
,
Wang
,
R.
, and
Ye
,
L.
,
2018
, “
Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures With Impingement and Effusion
,”
Int. J. Heat Mass Transfer
,
127
, pp.
639
650
.10.1016/j.ijheatmasstransfer.2018.07.085
You do not currently have access to this content.