Abstract

In this work, the effect of airfoil shape on the liquid film flow on the surface and subsequent atomization from the trailing edge of the airfoil is investigated. A symmetric airfoil (NACA0012) and an asymmetric airfoil (NACA2312) are studied and are placed in a high-speed flow of air at velocities up to 175 m/s. Water was introduced onto one side of each airfoil via twenty-six 0.5 mm diameter holes spaced 1 mm apart. These holes are positioned 35 mm downstream from the leading edge. Water flow rates between 1.4 cm2/s and 2.6 cm2/s are used. Liquid film behavior is characterized by (1) point measurements of dynamic liquid film thickness using a confocal arrangement of laser induced fluorescence (LIF) and (2) high-speed video (HSV) to visualize liquid accumulation and measure ligament breakup length at the trailing edge. Laser diffraction is used to measure line of sight average droplet sizes. Finally, phase Doppler interferometry (PDI) is used to measure spatially and temporally resolved droplet size and velocity in the pitchwise direction at 70 mm downstream trailing edge distance. The film thickness formed on the suction surface (SS) of NACA2312 is thicker than on the pressure surface (PS) and on NACA0012 which is attributed to larger adverse pressure gradient and thicker air boundary layer. Ligament lengths are almost identical for films on either surface of the NACA2312 vane. This confirms that the trailing edge vortices have minute influence on the atomization at an immediate distance from the trailing edge. Phase Doppler results indicate that the spray produced from the suction side of NACA2312 and NACA0012 airfoils is symmetric about the center of the vane, while introducing water from the pressure surface of NACA2312 shifts the spray 3 mm on the same side. This is confirmed from the droplet size distribution specifically at higher velocities. This is consistent with the stronger trailing edge vortices on the pressure surface at high air velocity (175 m/s) and at a distance well below (downstream) the trailing edge (approximately 0.7c). The results demonstrate that the shape of the airfoil can have an impact on spray distribution from the trailing edge.

References

1.
Lazik
,
W.
,
Doerr
,
T.
,
Bake
,
S. V.
,
Vd Bank
,
R.
, and
Rackwitz
,
L.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.10.1115/GT2008-51115
2.
Meier
,
W.
,
Weigand
,
P.
,
Duan
,
X. R.
, and
Giezendanner-Thoben
,
R.
,
2007
, “
Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame
,”
Combust. Flame
,
150
(
1–2
), pp.
2
26
.10.1016/j.combustflame.2007.04.002
3.
Van Eckeveld
,
A. C.
,
Gotfredsen
,
E.
,
Westerweel
,
J.
, and
Poelma
,
C.
,
2018
, “
Annular Two-Phase Flow in Vertical Smooth and Corrugated Pipes
,”
Int. J. Multiphase Flow
,
109
, pp.
150
163
.10.1016/j.ijmultiphaseflow.2018.07.004
4.
Schadel
,
S. A.
,
Leman
,
G. W.
,
Binder
,
J. L.
, and
Hanratty
,
T. J.
,
1990
, “
Rates of Atomization and Deposition in Vertical Annular Flow
,”
Int. J. Multiphase Flow
,
16
(
3
), pp.
363
374
.10.1016/0301-9322(90)90069-U
5.
Abdulkadir
,
M.
,
Samson
,
J. N.
,
Zhao
,
D.
,
Okhiria
,
D. U.
, and
Hernandez-Perez
,
V.
,
2018
, “
Annular Liquid Film Thickness Prediction in a Vertical 180° Return Bend
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
205
215
.10.1016/j.expthermflusci.2018.03.006
6.
Sasao
,
Y.
,
Segawa
,
K.
,
Kudo
,
T.
,
Takata
,
R.
,
Osako
,
M.
, and
Yamamoto
,
S.
,
2020
, “
Wetness Measurement and Droplet Transport Analysis in Actual Steam Test on a Scaled Low Pressure Turbine
,”
ASME
Paper No. GT2020-16117.10.1115/GT2020-16117
7.
Sasao
,
Y.
,
Senoo
,
S.
,
Bosdas
,
I.
, and
Kalfas
,
A.
,
2023
, “
Coarse Droplet Measurement at the Last Stage Stator Exit of a Four-Stage Scaled Steam Turbine Using an Optical Backscatter Probe
,”
ASME
Paper No. GT2023-103378.10.1115/GT2023-103378
8.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
, and
Senoo
,
S.
,
2017
, “
Unsteady Flow Field and Coarse Droplet Measurements in the Last Stage of a Low-Pressure Steam Turbine With Supersonic Airfoils Near the Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
091601
.10.1115/1.4036011
9.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
941
955
.10.1016/j.ijheatmasstransfer.2004.09.019
10.
Bankoff
,
S. G.
,
1994
, “
Significant Questions in Thin Liquid Film Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans.
,
116
(
1
), pp.
10
16
.10.1115/1.2910843
11.
Sattelmayer
,
T.
, and
Wittig
,
S.
,
1986
, “
Internal Flow Effects in Prefilming Airblast Atomizers: Mechanisms of Atomization and Droplet Spectra
,”
ASME J. Eng. Gas Turbines Power
,
108
(
3
), pp.
465
472
.10.1115/1.3239931
12.
El-Shanawany
,
M. S.
, and
Lefebvre
,
A. H.
,
1980
, “
Airblast Atomization: The Effect of Linear Scale on Mean Drop Size
,”
ASME
Paper No. 80-GT-74.10.1115/80-GT-74
13.
Gepperth
,
S.
,
Müller
,
A.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2012
, “
Ligament and Droplet Characteristics in Prefilming Airblast Atomization
,” International Conference on Liquid Atomization and Spray Systems (
ICLASS
), Heidelberg, Germany, Sept.
2
6
.https://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1111_b.pdf
14.
Inamura
,
T.
,
Shirota
,
M.
,
Tsushima
,
M.
,
Kato
,
M.
,
Hamajima
,
S.
, and
Sato
,
A.
,
2012
, “
Spray Characteristics of Prefilming Type of Airblast Atomizer
,” International Conference on Liquid Atomization and Spray Systems (
ICLASS
), Heidelberg, Germany, Sept.
2
6
.https://www.ilasseurope.org/ICLASS/iclass2012_Heidelberg/Contributions/Paper-pdfs/Contribution1259_b.pdf
15.
Esquivias
,
B.
,
Hickey
,
B.
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2022
, “
Investigation of Water Films Shed From an Airfoil in a High-Speed Flow
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121002
.10.1115/1.4055453
16.
Kamada
,
Y.
,
Inoue
,
T.
,
Wang
,
Z.
,
Inoue
,
C.
, and
Senoo
,
S.
,
2023
, “
Annular Liquid-Film Fragmentation Process Sheared by Developed Turbulent Gas Flow
,”
ASME
Paper No. GT2023-101666.10.1115/GT2023-101666
17.
Safiullah
,
S.
,
Esquivias
,
B.
,
Hickey
,
B.
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2023
, “
Investigation of Water Film Behavior on the Surface of an Airfoil in a High-Speed Flow and Subsequent Ligament Formation and Breakup From the Trailing Edge
,”
ASME
Paper No. GT2023-101583.10.1115/GT2023-101583
18.
Inamura
,
T.
,
Katagata
,
N.
,
Nishikawa
,
H.
,
Okabe
,
T.
, and
Fumoto
,
K.
,
2019
, “
Effects of Prefilmer Edge Thickness on Spray Characteristics in Prefilming Airblast Atomization
,”
Int. J. Multiphase Flow
,
121
, p.
103117
.10.1016/j.ijmultiphaseflow.2019.103117
19.
Safiullah
,
McDonell
,
V.
,
Tabata
,
S.
, and
Senoo
,
S.
,
2024
, “
Effect of Liquid Properties on Film Behavior on the Surface of an Airfoil in a High-Speed Flow and Subsequent Atomization From the Trailing Edge
,”
Int. J. Multiphase Flow
,
180
, p.
104926
.10.1016/j.ijmultiphaseflow.2024.104926
20.
Okabe
,
T.
,
Katagata
,
N.
,
Sakaki
,
T.
,
Shirota
,
M.
,
Fumoto
,
K.
, and
Inamura
,
T.
,
2019
, “
Time-Dependent Breakup Length of Liquid Sheet in Prefilming Type of Airblast Atomizer
,”
Atomization Sprays
,
29
(
4
), pp.
289
303
.10.1615/AtomizSpr.2019030263
21.
Ito
,
D.
,
Nakano
,
S.
,
Matsuzaki
,
Y.
, and
Takeda
,
Y.
,
2021
, “
Effects of Plate Edge Thickness on Droplet Generation Caused by Water Film Breakup at the Plate Edge
,”
ASME J. Fluids Eng.
,
143
(
12
), p.
121107
.10.1115/1.4052126
22.
Yasuda
,
T.
,
Watanabe
,
T.
,
Himeno
,
T.
, and
Nan
,
X.
,
2019
, “
Effects of Trailing Edge Radius on Liquid Behavior Around Compressor Blade in Droplet Laden Flow
,” Proceedings of the 47th Annual Meeting of the Gas Turbine Society of Japan, Hokkaido, Japan, Sept. 2019.
23.
Javed
,
B.
,
Watanabe
,
T.
,
Himeno
,
T.
, and
Uzawa
,
S.
,
2017
, “
Effect of Trailing Edge Size on the Droplets Size Distribution Downstream of the Blade
,”
J. Therm. Sci. Technol.
,
12
(
2
), p.
JTST0031
.10.1299/jtst.2017jtst0031
24.
Safiullah
,
S.
,
McDonell
,
V.
,
Tabata
,
S.
,
Senoo
,
S.
,
Esquivias
,
B.
, and
Hickey
,
B.
,
2025
, “
Investigation of Water Film Dynamics on the Surface of an Airfoil in a High-Speed Flow and Subsequent Ligament Formation and Breakup From the Trailing Edge
,”
ASME J. Eng. Gas Turbines Power
,
147
(
4
), p.
041028
.10.1115/1.4066993
25.
Han
,
L. S.
,
Cox
,
W. R.
,
Chait
,
A.
, and
COLUMBUS, O. S. U. R. F.
,
1978
, “
Investigation of the Boundary Layer Behavior on Turbine Airfoils
,” The Ohio State University, Columbus, OH, Report No. AFAPL-TR-79-2011.
26.
Cox
,
W. R.
,
1983
, “
A Visual Study of Turbine Blade Pressure-Side Boundary Layers
,”
ASME J. Eng. Gas Turbines Power
,
105
(
1
), pp.
47
52
.10.1115/1.3227397
27.
Cicatelli
,
G.
, and
Sieverding
,
C. H.
,
1997
, “
The Effect of Vortex Shedding on the Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade
,”
ASME J. Turbomach.
,
119
(
4
), pp.
810
819
.10.1115/1.2841192
28.
Inoue
,
T.
,
Inoue
,
C.
,
Fujii
,
G.
, and
Daimon
,
Y.
,
2022
, “
Evaporation of Three-Dimensional Wavy Liquid Film Entrained by Turbulent Gas Flow
,”
AIAA J.
,
60
(
6
), pp.
3805
3812
.10.2514/1.J061381
29.
Schmitt
,
R. L.
,
Stevenson
,
W. H.
, and
Simmons
,
H. C.
,
1982
, “
Optical Measurement of Liquid Film Thickness
,” First International Congress on Application of Lasers and Electro-Optics, Laser Institute of America, Boston, MA, Sept. 20–23, pp.
31
35
.
30.
Bachalo
,
W. D.
, and
Houser
,
M. J.
,
1984
, “
Phase/Doppler Spray Analyzer for Simultaneous Measurements of Drop Size and Velocity Distributions
,”
Opt. Eng.
,
23
(
5
), pp.
583
590
.10.1117/12.7973341
31.
McDonell
,
V. G.
, and
Samuelsen
,
S.
,
1990
, “
Sensitivity Assessment of a Phase-Doppler Interferometer to User-Controlled Settings
,”
Liquid Particle Size Measurement Techniques: 2nd Volume
,
ASTM International
, Philadelphia, PA , pp.
170
189
.10.1520/STP25420S
32.
Atzori
,
M.
,
Vinuesa
,
R.
,
Fahland
,
G.
,
Stroh
,
A.
,
Gatti
,
D.
,
Frohnapfel
,
B.
, and
Schlatter
,
P.
,
2020
, “
Aerodynamic Effects of Uniform Blowing and Suction on a NACA4412 Airfoil
,”
Flow, Turbul. Combust.
,
105
(
3
), pp.
735
759
.10.1007/s10494-020-00135-z
33.
Bulat
,
P. V.
,
Prodan
,
N. V.
,
Dudnikov
,
S. Y.
, and
Kurnukhin
,
A. A.
,
2022
, “
Investigation of the Characteristics of Airfoils With Air Suction From the Upper Surface and a Given Pressure Distribution
,”
Russ. Aeronaut.
,
65
(
3
), pp.
515
523
.10.3103/S1068799822030102
34.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
,
Kaddatz
,
J.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
.10.4271/2011-01-0357
35.
Otsu
,
N.
,
1975
, “
A Threshold Selection Method From Gray-Level Histograms
,”
Automatica
,
11
(
285–296
), pp.
23
27
.10.1109/TSMC.1979.4310076
36.
Shannon
,
D.
,
Morris
,
S.
, and
Mueller
,
T.
,
2005
, “
Trailing Edge Flow Physics and Acoustics
,”
11th AIAA/CEAS Aeroacoustics Conference
, Monterey, California, May 23--25, p.
2957
./10.2514/6.2005-2957
37.
Viswanath
,
P. R.
,
Cleary
,
J. W.
,
Seegmiller
,
H. L.
, and
Horstman
,
C. C.
,
1980
, “
Trailing-Edge Flows at High Reynolds Number
,”
AIAA J.
,
18
(
9
), pp.
1059
1065
.10.2514/3.50854
38.
Nukiyama
,
S.
, and
Tanasawa
,
Y.
,
1939
, “
An Experiment on the Atomization of Liquid: 3rd Report, On the Distribution of the Size of Droplets
,”
J. Soc. Mech. Eng., Jpn.
,
5
(
18
), pp.
131
135
.10.1299/kikai1938.5.131
You do not currently have access to this content.