Abstract

The blade is a critical turbine engine component with a high risk of high-cycle fatigue (HCF). Shrouded blades are often employed to reduce this vibration. However, the nonlinearity of contact surfaces makes it challenging to accurately predict its amplitude–frequency curves as a function of the loading magnitude. In this study, an economical experimental setup was designed, which requires only two blades to investigate the dynamic characteristics of shrouded blades. A novel method was adapted to measure the contact force and friction coefficient of the shrouds. Sinusoidal excitations were executed, and amplitude–frequency curves were recorded. Subsequently, the study established a relationship between resonant frequency to vibrational stress using these amplitude–frequency curves. Additionally, the experiment was simulated by the harmonic balance method (HBM). A hysteresis spring contact model was adapted to simulate the contact of the shrouds. Vibrational stress, resonant frequency, and damping ratio were computed based on the displacement outcomes from the HBM simulation. The consistency between the obtained simulation outcomes and experimental results was found to be satisfactory, indicating that the proposed approach effectively captured the complex behavior of the shrouded blades.

References

1.
Wu
,
Y.
,
Xuan
,
H.
,
Wu
,
C.
, and
Mi
,
D.
,
2022
, “
Effect of Under-Platform Dampers on the Forced Vibration of High-Speed Rotating Blades
,”
J. Mech. Sci. Technol.
,
36
(
8
), pp.
3837
3850
.10.1007/s12206-022-0707-4
2.
Wu
,
J.
,
Xie
,
Y.
,
Zhang
,
D.
, and
Zhang
,
M.
,
2012
, “
Experimental Friction Damping Characteristic of a Steam Turbine Blade Coupled by Shroud and Snubber at Standstill Set-Up
,”
ASME
Paper No. GT2012-69472.10.1115/GT2012-69472
3.
Guo
,
X. M.
,
Ni
,
K. X.
,
Ma
,
H.
,
Zeng
,
J.
,
Wang
,
Z. L.
, and
Wen
,
B. C.
,
2021
, “
Dynamic Response Analysis of Shrouded Blades Under Impact-Friction Considering the Influence of Passive Blade Vibration
,”
J. Sound Vib.
,
503
, p.
116112
.10.1016/j.jsv.2021.116112
4.
Sun
,
Y.
,
Denimal
,
E.
,
Yuan
,
J.
, and
Salles
,
L.
,
2022
, “
Geometric Design of Friction Ring Dampers in Blisks Using Nonlinear Modal Analysis and Kriging Surrogate Model
,”
Struct. Multidiscip. Optim.
,
65
(
3
), p.
98
.10.1007/s00158-021-03093-w
5.
Berruti
,
T.
, and
Maschio
,
V.
,
2012
, “
Experimental Investigation on the Forced Response of a Dummy Counter-Rotating Turbine Stage With Friction Damping
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122502
.10.1115/1.4007325
6.
Cui
,
C.
,
Ma
,
H.
,
Jin
,
Y.
,
Xie
,
F.
,
Yang
,
T.
, and
Liu
,
S.
,
2019
, “
Numerical and Experimental Investigation on the Vibro-Impact Responses Analysis of Shrouded Blade
,”
J. Low Freq. Noise, Vib. Active Control
,
38
(
3–4
), pp.
1188
1201
.10.1177/1461348418811456
7.
de Filippis
,
H.
,
Thouverez
,
F.
,
Blanc
,
L.
,
Girard
,
P.
, and
Chevillot
,
F.
,
2023
, “
Experimental Nonlinear Analysis of Pre-Loaded Turbine Blades Dynamics With Frictional Shroud Contact
,”
ASME
Paper No. GT2023-101727.10.1115/GT2023-101727
8.
de Filippis
,
H.
,
2023
, “
Dynamique non linéaire du contact inter-aubes de turbine: caractérisation expérimentale et simulation numérique
,”
Thesis
, Ecole Centrale de Lyon, France.https://hal.science/LTDS/tel-04542293v1
9.
Mussulini
,
B.
,
Driemeier
,
L.
,
Moura
,
R. T.
,
Vargas
,
R. T.
,
Ramos
,
H.
, and
Alves
,
M.
,
2023
, “
Slip Rate and Pressure Sensitive Friction Measurement for Crash Simulation
,”
Int. J. Impact Eng.
,
176
, p.
104573
.10.1016/j.ijimpeng.2023.104573
10.
Kim
,
Y.
,
Jain
,
M.
, and
Metzger
,
D.
,
2012
, “
Determination of Pressure-Dependent Friction Coefficient From Draw-Bend Test and Its Application to Cup Drawing
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
69
78
.10.1016/j.ijmachtools.2011.12.011
11.
Sun
,
Y.
,
Wu
,
Y.
,
Xing
,
W.
,
Fan
,
Y.
,
Yuan
,
J.
, and
Zhang
,
D.
,
2022
, “
Review of Damped Nonlinear Normal Mode in Analysis of Friction Dampers of Blades/Blisks
,”
Hangkong Dongli Xuebao/J. Aerosp. Power
, 37(10), pp. 2167--2187.10.13224/j.cnki.jasp.20220264
12.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
, “
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,”
Numerical Analysis
,
J.
Awrejcewicz
, ed.,
IntechOpen
,
Rijeka, Croatia
, Chap.
14
.
13.
Gao
,
S.
,
Wang
,
Y.
, and
Sun
,
Z.
,
2020
, “
An Energy Method for Assessing the Damping of Turbine Blade Underplatform Damper and Forced Response Verification
,”
ASME
Paper No. GT2020-14532.10.1115/GT2020-14532
14.
Sun
,
Y.
,
Yuan
,
J.
,
Pesaresi
,
L.
,
Denimal
,
E.
, and
Salles
,
L.
,
2020
, “
Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051102
.10.1115/1.4046953
15.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
259
268
.10.1115/1.4009973
16.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
, New York.
17.
Mao
,
X.
,
Wang
,
Y.
, and
Ye
,
H.
,
2017
, “
A Method for Slip-Stick Area Analysis of Contact Surface in Rotor Blades With Friction Damper
,”
ASME
Paper No. DETC2017-67524.10.1115/DETC2017-67524
18.
Gao
,
S. M.
,
Wang
,
Y.
,
Sun
,
Z.
, and
Chen
,
S.
,
2021
, “
A Prediction Method With Altering Equivalent Stiffness for Damping Evaluation of Shrouded Bladed Disk Dynamic Systems
,”
Symmetry
,
13
(
3
), p.
413
.10.3390/sym13030413
19.
Zheng
,
D. D.
,
Liu
,
G.
,
He
,
S. W.
, and
Han
,
B.
,
2022
, “
Comparative Analysis of Rub-Impact Dynamics of Shrouded Blades Based on the Bilinear Hysteresis Model and the Coulomb Friction Model
,”
Lubricants
,
10
(
2
), p.
31
.10.3390/lubricants10020031
20.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer Cham
, Switzerland.https://link.springer.com/book/10.1007/978-3-030-14023-6
21.
Hu
,
H.
, and
Tang
,
J. H.
,
2006
, “
Solution of a Duffing-Harmonic Oscillator by the Method of Harmonic Balance
,”
J. Sound Vib.
,
294
(
3
), pp.
637
639
.10.1016/j.jsv.2005.12.025
22.
Peng
,
Z.
,
Lang
,
Z.
,
Billings
,
S.
, and
Tomlinson
,
G.
,
2008
, “
Comparisons Between Harmonic Balance and Nonlinear Output Frequency Response Function in Nonlinear System Analysis
,”
J. Sound Vib.
,
311
(
1–2
), pp.
56
73
.10.1016/j.jsv.2007.08.035
23.
Guillen
,
J.
, and
Pierre
,
C.
,
1999
, “
An Efficient, Hybrid, Frequency-Time Domain Method for the Dynamics of Large-Scale Dry-Friction Damped Structural Systems
,”
IUTAM Symposium on Unilateral Multibody Contacts
,
F.
Pfeiffer
and
C.
Glocker
, eds.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
169
178
.
24.
Tüfekci
,
M.
,
El Haddad
,
F.
,
Salles
,
L.
,
Setchfield
,
R.
, and
Renson
,
L.
,
2023
, “
Effects of the Seal Wire on the Nonlinear Dynamics of the Aircraft Engine Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121004
.10.1115/1.4063413
25.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
,
Gouskov
,
A. M.
, and
Jean
,
P.
,
2012
, “
Dual Time Stepping Algorithms With the High Order Harmonic Balance Method for Contact Interfaces With Fretting-Wear
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032503
.10.1115/1.4004236
26.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J. Sound Vib.
,
217
(
5
), pp.
909
925
.10.1006/jsvi.1998.1802
27.
Zheng
,
Y.
,
Hou
,
Z.
, and
Rong
,
Y.
,
2008
, “
The Study of Fixture Stiffness—Part II: Contact Stiffness Identification Between Fixture Components
,”
Int. J. Adv. Manuf. Technol.
,
38
(
1–2
), pp.
19
31
.10.1007/s00170-007-1077-x
You do not currently have access to this content.