Abstract

Combustor turbulence in a gas turbine engine greatly influences the efficiency of the downstream high-pressure turbine stage. Here we use a multifidelity computational optimization methodology to modify the geometry of a nonreacting combustor simulator such that turbulence properties are optimized at the combustor-turbine interface. We modify the size, orientation, and positioning of the primary and dilution jets to minimize turbulence intensity at the combustor exit while demonstrating negligible or favorable changes to the pressure loss and mixing characteristics of the combustor. The optimization is performed using a machine learning surrogate-assisted genetic algorithm coupled with large eddy simulations (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations. The optimization is performed in three phases: (i) we develop a continuously learning artificial neural network surrogate model, (ii) we perform a stochastic optimization with RANS simulations to narrow the parameter space, and (iii) we perform a stochastic optimization with a coarse-grid LES to identify the optimal solution. Using this approach, we are able to achieve a 5.35% reduction in turbulence intensity and a 0.42% reduction in pressure loss while maintaining good mixing uniformity at the combustor exit. These changes are enabled primarily by changing the aspect ratio, diameter, and spacing of the primary zone and dilution jets, as well as the chute height of the primary zone jets. This successful demonstration of multifidelity optimization in the combustor simulator can be extended in the future to the design of improved gas turbine combustors.

References

1.
Folk
,
M. B.
,
2019
, “
The Impact of Combustor Turbulence on Loss Mechanisms in the High Pressure Turbine
,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.https://www.repository.cam.ac.uk/handle/1810/305319
2.
Zimmerman
,
D.
,
1979
, “
Laser Anemometer Measurements at the Exit of a T63-C20 Combustor
,” Nasa Lewis Research Center, Cleveland, OH, Report No.
NASA CR-15962
.https://apps.dtic.mil/sti/citations/ADA072709
3.
Bicen
,
A.
,
Tse
,
D.
, and
Whitelaw
,
J.
,
1988
, “
Flow and Combustion Characteristics of an Annular Combustor
,”
Combust. Flame
,
72
(
2
), pp.
175
192
.10.1016/0010-2180(88)90117-4
4.
Wankhede
,
M. J.
,
Bressloff
,
N. W.
, and
Keane
,
A. J.
,
2011
, “
Combustor Design Optimization Using co-Kriging of Steady and Unsteady Turbulent Combustion
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121504
.10.1115/1.4004155
5.
Sun
,
Y.
,
Hao
,
M.
, and
Wang
,
Z.
,
2023
, “
Topology Optimization of Turbulent Flow Cooling Structures Based on the K-ε Model
,”
Entropy
,
25
(
9
), p.
1299
.10.3390/e25091299
6.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
7.
Forrester
,
A. I.
,
Keane
,
A. J.
, and
Sobester
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Hoboken, NJ.
8.
Jeong
,
S.
,
Minemura
,
Y.
, and
Obayashi
,
S.
,
2006
, “
Optimization of Combustion Chamber for Diesel Engine Using Kriging Model
,”
J. Fluid Sci. Technol.
,
1
(
2
), pp.
138
146
.10.1299/jfst.1.138
9.
Duchaine
,
F.
,
Morel
,
T.
, and
Gicquel
,
L. Y.
,
2009
, “
Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers
,”
AIAA J.
,
47
(
3
), pp.
631
645
.10.2514/1.37808
10.
Toal
,
D. J.
,
Zhang
,
X.
,
Keane
,
A. J.
,
Lee
,
C. Y.
, and
Zedda
,
M.
,
2021
, “
The Potential of a Multifidelity Approach to Gas Turbine Combustor Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051002
.10.1115/1.4048654
11.
Cavazzuti
,
M.
,
2013
,
Optimization Methods: From Theory to Design
,
Springer
, Berlin, Heidelberg, Germany.
12.
Kramer
,
O.
,
2018
,
Genetic Algorithm Essentials
,
Springer International Publishing
, Cham, Switzerland.
13.
Ahuja
,
V.
, and
Hartfield
,
R.
,
2015
, “
Optimization of Scramjet Combustor Geometries Using Genetic Algorithms
,”
J. Propul. Power
,
31
(
5
), pp.
1481
1485
.10.2514/1.B35397
14.
Moss
,
R. W.
, and
Oldfield
,
M. L.
,
1991
, “
Measurements of Hot Combustor Turbulence Spectra
,”
ASME
Paper No. 91-GT-351.10.1115/91-GT-351
15.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Gas Turbine Combustion: Alternative Fuels and Emissions
,” 3rd ed., Taylor & Francis, Abingdon, UK.
16.
Cresci
,
I.
,
Ireland
,
P.
,
Bacic
,
M.
,
Tibbott
,
I.
, and
Rawlinson
,
A.
,
2015
, “
Realistic Velocity and Turbulence Intensity Profiles at the Combustor-Turbine Interaction (CTI) Plane in a Nozzle Guide Vane Test Facility
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, ETC11, Madrid, Spain, Mar. 23–27.https://www.researchgate.net/publication/282687853_Realistic_velocity_and_turbulence_intensity_profiles_at_the_combustor-turbine_interaction_CTI_plane_in_a_nozzle_guide_vane_test_facility
17.
Barringer
,
M.
,
Richard
,
O.
,
Walter
,
J.
,
Stitzel
,
S.
, and
Thole
,
K.
,
2002
, “
Flow Field Simulations of a Gas Turbine Combustor
,”
ASME J. Turbomach.
,
124
(
3
), pp.
508
516
.10.1115/1.1475742
18.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1996
, “
High Freestream Turbulence Effects on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
276
284
.10.1115/1.2817374
19.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
20.
Huang
,
S.
, and
Li
,
Q. S.
,
2010
, “
A New Dynamic One‐Equation Subgrid‐Scale Model for Large Eddy Simulations
,”
Int. J. Numer. Methods Eng.
,
81
(
7
), pp.
835
865
.10.1002/nme.2715
21.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
22.
Riazi
,
M. R.
, and
Whitson
,
C. H.
,
1993
, “
Estimating Diffusion Coefficients of Dense Fluids
,”
Ind. Eng. Chem. Res.
,
32
(
12
), pp.
3081
3088
.10.1021/ie00024a018
23.
Martínez
,
J.
,
Piscaglia
,
F.
,
Montorfano
,
A.
,
Onorati
,
A.
, and
Aithal
,
S. M.
,
2017
, “
Influence of Momentum Interpolation Methods on the Accuracy and Convergence of Pressure-Velocity Coupling Algorithms in OpenFOAM®
,”
J. Comput. Appl. Math.
,
309
, pp.
654
673
.10.1016/j.cam.2016.03.037
24.
Patankar
,
S.
, and
Spalding
,
D.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
25.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” Proceedings of the 4th International Symposium on Turbulence,
Heat Mass Transfer
, Antalya, Turkey, Oct. 12–17, pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
26.
Tomac
,
M. N.
, and
Gregory
,
J. W.
,
2018
, “
Oscillation Characteristics of Mutually Impinging Dual Jets in a Mixing Chamber
,”
Phys. Fluids
,
30
(
11
), p.
117102
.10.1063/1.5051731
27.
Salewski
,
M.
,
Stankovic
,
D.
, and
Fuchs
,
L.
,
2008
, “
Mixing in Circular and Non-Circular Jets in Crossflow
,”
Flow Turbul. Combust.
,
80
(
2
), pp.
255
283
.10.1007/s10494-007-9119-x
28.
Hatch
,
M. S.
,
Sowa
,
W. A.
,
Samulersen
,
G. S.
, and
Holdeman
,
J. D.
,
1995
, “
Jet Mixing Into a Heated Cross Flow in a Cylindrical Duct: Influence of Geometry and Flow Variations
,”
J. Propul. Power
,
11
(
3
), pp.
393
402
.10.2514/3.23857
29.
Vranos
,
A.
,
Liscinsky
,
D.
,
True
,
B.
, and
Holdeman
,
J.
,
1991
, “
Experimental Study of Cross-Stream Mixing in a Cylindrical Duct
,”
AIAA
Paper No. 91-2459.10.2514/6.1991-2459
30.
Holdeman
,
J.
,
Liscinsky
,
D.
,
Samuelsen
,
G.
,
Smith
,
C.
, and
Oechsle
,
V.
,
1996
, “
Mixing of Multiple Jets With a Confined Subsonic Crossflow in a Cylindrical Duct
,”
ASME
Paper No. 96-GT-482.10.1115/96-GT-482
31.
Adams
,
B.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Ebeida
,
M.
,
Eddy
,
J.
,
Eldred
,
M.
,
Hooper
,
R
, et al.,
2021
, “
Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.15 User's Manual
,”
Sandia
, Albuquerque, NM, Report No.
SAND2020-12495
.10.2172/1829573
32.
Matsumoto
,
M.
, and
Nishimura
,
T.
,
1998
, “
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator
,”
ACM Trans. Model. Comput. Simul.
,
8
(
1
), pp.
3
30
.10.1145/272991.272995
33.
Zimmerman
,
D. C.
,
1996
, Genetic Algorithms for Navigating Expensive and Complex Design Spaces,”
Sandia National Laboratories
, Albuquerque, NM,
Report No. AO-7736 CA 02.
34.
Saltelli
,
A.
,
2007
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley
, Hoboken, NJ.
35.
Narendra Kumar
,
C.
, and
Sinhamahapatra
,
K.
,
2023
, “
The Effects of Spacing to Diameter Ratio on Mixing Characteristics of Circular and Elliptical Twin Jets
,”
Proc. Inst. Mech. Eng., Part G J. Aerosp. Eng.
,
237
(
11
), pp.
2632
2646
.10.1177/09544100231155692
36.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.10.5555/1953048.2078195
37.
Goldberg
,
D. E.
, and
Rudnick
,
M.
,
1991
, “
Genetic Algorithms and the Variance of Fitness
,”
Complex Syst.
,
5
, pp.
265
278
.https://content.wolfram.com/sites/13/2018/02/05-3-1.pdf
38.
Miller
,
B. L.
, and
Goldberg
,
D. E.
,
1995
, “
Genetic Algorithms, Tournament Selection, and the Effects of Noise
,”
Complex Syst.
,
9
, pp.
193
212
.https://wpmedia.wolfram.com/sites/13/2018/02/09-3-2.pdf
39.
Gibbs
,
M.
,
Dandy
,
G.
, and
Maier
,
H.
,
2008
, “
A Genetic Algorithm Calibration Method Based on Convergence Due to Genetic Drift
,”
Inform. Sci.
,
178
(
14
), pp.
2857
2869
.10.1016/j.ins.2008.03.012
40.
Schaffer
,
J.
,
Caruana
,
R.
,
Eshelman
,
L.
, and
Das
,
R.
,
1989
, “
A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization
,”
Third International Conference on Genetic Algorithms
, Fairfax, VA, June 1, pp.
51
60
.https://www.researchgate.net/publication/220885653_A_Study_of_Control_Parameters_Affecting_Online_Performance_of_Genetic_Algorithms_for_Function_Optimization
41.
Andresen
,
M.
,
Bräsel
,
H.
,
Mörig
,
M.
,
Tusch
,
J.
,
Werner
,
F.
, and
Willenius
,
P.
,
2008
, “
Simulated Annealing and Genetic Algorithms for Minimizing Mean Flow Time in an Open Shop
,”
Math. Comput. Modell.
,
48
(
7–8
), pp.
1279
1293
.10.1016/j.mcm.2008.01.002
You do not currently have access to this content.