Abstract

Deviations in the bladed disk manufacturing, such as uneven thickness, surface roughness, or sinkholes in casted wheels, can cause geometric mistuning and result in vibration amplification, severely decreasing reliability. To study the dynamic characteristics of actual industrial bladed disks with complex geometric shapes, it is essential to accurately and quickly forecast the vibration response of geometrically mistuned systems. This remains a challenge because of the high dimensionality of the geometric mistuning parameters and the extreme sensitivity of the vibration response to random geometric mistuning parameters. This paper proposes a deep neural network (DNN) framework for forecasting the vibration response of mistuned blade disks with high-dimensional geometric mistuning parameters. We generated the mistuned parameter matrix to describe the geometric uncertainty by mapping the deviation values of each node in the mistuned blade finite element model. Then, we constructed a geometrically mistuned bladed disk DNN (GMS-DNN) to model the relation between the geometric mistuning parameter matrix and blade vibration response. This approach decouples the mistuned system's vibration equations and substitutes a DNN for the coupling process. The GMS-DNN adopts the transformer encoder to extract geometric mistuning parameter features and uses the blade-disk boundary response to represent the variation of geometric mistuning parameters for different blades to reduce the DNN input parameter dimensions. We verified the validity of the proposed method using geometric deviations from an actual machined industrial-bladed disk. All DNNs in the GMS-DNN exhibited good prediction accuracy on both the training datasets and testing datasets. The results show that the R2 value of the predicted response is 0.99 for the unknown test data, while the error of the amplification factor of the actual vibration response is less than 0.01.

References

1.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
2.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
3.
Yao
,
J.
,
Wang
,
J.
, and
Li
,
Q.
,
2011
, “
Improved Modal Localization and Excitation Factors for Understanding Mistuned Bladed Disk Response
,”
J. Propul. Power
,
27
(
1
), pp.
50
60
.10.2514/1.48244
4.
Yao
,
J.
,
Wang
,
J.
, and
Li
,
Q.
,
2009
, “
Robustness Analysis of Mistuned Bladed Disk Using the Upper Bound of Structured Singular Value
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
032501
.10.1115/1.3018942
5.
Liao
,
H.
,
Wang
,
J.
,
Yao
,
J.
, and
Li
,
Q.
,
2010
, “
Mistuning Forced Response Characteristics Analysis of Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122501
.10.1115/1.4001054
6.
Jiuzhou
,
L.
,
Lin
,
L.
,
Yu
,
F.
, and
Pengcheng
,
D.
,
2018
, “
Research on Vibration Suppression of a Mistuned Blisk by a Piezoelectric Network
,”
Chin. J. Aeronaut.
,
31
(
2
), pp.
285
299
.10.1016/j.cja.2017.12.003
7.
Deng
,
S.
,
Yao
,
J.
,
Wang
,
L.
,
Xin
,
J.
, and
Hu
,
N.
,
2020
, “
Comparative Studies of Surrogate Models for Response Analysis of Mistuned Bladed Disks
,”
Int. J. Comput. Methods
,
17
(
10
), p.
2050012
.10.1142/S0219876220500127
8.
Cao
,
Z.
,
Fei
,
Q.
,
Jiang
,
D.
,
Kapania
,
R. K.
,
Wu
,
S.
, and
Jin
,
H.
,
2021
, “
A Sensitivity-Based Nonlinear Finite Element Model Updating Method for Nonlinear Engineering Structures
,”
Appl. Math. Model.
,
100
, pp.
632
655
.10.1016/j.apm.2021.07.034
9.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
10.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2014
, “
Automated Finite Element Model Mesh Updating Scheme Applicable to Mistuning Analysis
,”
ASME
Paper No. GT2014-26925.10.1115/GT2014-26925
11.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
12.
Gillaugh
,
D. L.
,
Kaszynski
,
A. A.
,
Brown
,
J. M.
,
Beck
,
J. A.
, and
Slater
,
J. C.
,
2019
, “
Mistuning Evaluation Comparison Via As-Manufactured Models, Traveling Wave Excitation, and Compressor Rigs
,”
ASME J. Eng. Gas Turbines Power
,
141
(
60)
), p.
061006
.10.1115/1.4042079
13.
Brown
,
J. M.
,
Carper
,
E.
,
Beck
,
J.
, and
Kaszynski
,
A.
,
2019
, “
Emulation of Frequency and Mode Shape Variation of As-Manufactured Airfoils With Eigenvalue Veering and Crossing
,”
AIAA
Paper No.
2019
2000
.10.2514/6.2019-2000
14.
Zhou
,
B.
,
Zhao
,
J.
,
Ye
,
N.
, and
Berruti
,
T. M.
,
2022
, “
Blisk With Small Geometry Mistuning and Blend Repair: As-Measured Finite Element Model and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101017
.10.1115/1.4055363
15.
Liang
,
D.
,
Jia
,
Z.
,
Cao
,
Z.
,
Wu
,
Y.
,
Zhang
,
R.
,
Fan
,
J.
,
Wu
,
C.
, and
Yao
,
J.
,
2022
, “
Geometric Mistuning Identification and Finite Element Model Updating Methods for Bladed Disks
,”
Aerosp. Sci. Technol.
,
130
, p.
107915
.10.1016/j.ast.2022.107915
16.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
17.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2014
, “
Geometric Mistuning Identification of Integrally Bladed Rotors Using Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122504
.10.1115/1.4027762
18.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Models of Blisks With Small Geometric Mistuning
,”
ASME J. Vib. Acoust.
,
139
(
4
), p.
041003
.10.1115/1.4036105
19.
Beck
,
J.
,
Brown
,
J. M.
, and
Kaszynski
,
A.
,
2019
, “
Bayesian Surrogate Modeling of Bladed Disk Sector Mode Shape and Geometrical Spatial Variations
,”
AIAA
Paper No.
2019
2002
.10.2514/6.2019-2002
20.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Slater
,
J. C.
,
2015
, “
A Fleet Risk Prediction Methodology for Mistuned IBRs Using Geometric Mistuning Models
,”
AIAA
Paper No.
2015
1144
.10.2514/6.2015-1144
21.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J
.,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
22.
Madden
,
A.
,
Epureanu
,
B. I.
, and
Filippi
,
S.
,
2012
, “
Reduced-Order Modeling Approach for Blisks With Large Mass, Stiffness, and Geometric Mistuning
,”
AIAA J.
,
50
(
2
), pp.
366
374
.10.2514/1.J051140
23.
Beck
,
J. A.
,
Brown
,
J. M.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2014
, “
Component-Mode Reduced-Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
24.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Cross
,
C. J.
, and
Slater
,
J. C.
,
2015
, “
Geometric Mistuning Reduced-Order Models for Integrally Bladed Rotors With Mistuned Disk–Blade Boundaries
,”
ASME J. Turbomach.
,
137
(
7
), p.
071001
.10.1115/1.4029122
25.
Scarselli
,
G.
, and
Lecce
,
L.
,
2004
, “
Non Deterministic Approaches for the Evaluation of the Mistune Effects on the Rotor Dynamics
,”
AIAA
Paper No.
2004
1748
.10.2514/6.2004-1748
26.
Sinha
,
A.
,
2006
, “
Computation of the Statistics of Forced Response of a Mistuned Bladed Disk Assembly Via Polynomial Chaos
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
449
457
.10.1115/1.2215620
27.
Brown
,
J. M.
,
Beck
,
J.
,
Kaszynski
,
A.
, and
Clark
,
J.
,
2019
, “
Surrogate Modeling of Manufacturing Variation Effects on Unsteady Interactions in a Transonic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032506
.10.1115/1.4041314
28.
Kelly
,
S. T.
,
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2021
, “
Data-Driven Modeling Approach for Mistuned Cyclic Structures
,”
AIAA J.
,
59
(
7
), pp.
2684
2696
.10.2514/1.J060117
29.
Liang
,
D.
,
Yao
,
J.
,
Jia
,
Z.
,
Cao
,
Z.
,
Liu
,
X.
, and
Jing
,
X.
,
2023
, “
Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks
,”
AIAA J.
,
61
(
1
), pp.
391
405
.10.2514/1.J062215
30.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
31.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
32.
Vargiu
,
P.
,
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.10.1016/j.ijmecsci.2011.05.010
33.
Yuan
,
J.
,
Scarpa
,
F.
,
Allegri
,
G.
,
Titurus
,
B.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Efficient Computational Techniques for Mistuning Analysis of Bladed Discs: A Review
,”
Mech. Syst. Signal Proc.
,
87
, pp.
71
90
.10.1016/j.ymssp.2016.09.041
34.
Henry
,
E. B.
,
Brown
,
J. M.
, and
Beck
,
J. A.
,
2017
, “
Mistuned Rotor Reduced Order Modeling With Surrogate-Modeled Airfoil Substructures
,”
AIAA
Paper No.
2017
1600
.10.2514/6.2017-1600
35.
Beck
,
J. A.
,
Brown
,
J. M.
,
Kaszynski
,
A. A.
,
Carper
,
E. B.
, and
Gillaugh
,
D. L.
,
2019
, “
Geometric Mistuning Reduced-Order Model Development Utilizing Bayesian Surrogate Models for Component Mode Calculations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101013
.10.1115/1.4044454
36.
Jones
,
K. W.
, and
Cross
,
C. J.
,
2003
, “
Traveling Wave Excitation System for Bladed Disks
,”
J. Propul. Power
,
19
(
1
), pp.
135
141
.10.2514/2.6089
37.
Dreau
,
J.
,
Magnain
,
B.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2021
, “
Polynomial Chaos Expansion for Permutation and Cyclic Permutation Invariant Systems: Application to Mistuned Bladed Disks
,”
J. Sound Vib.
,
503
, p.
116103
.10.1016/j.jsv.2021.116103
38.
Boyd
,
I.
,
Bae
,
H.
,
Carper
,
E.
, and
Brown
,
J. M.
,
2019
, “
Classification Decision Boundary for Stochastic Mistuned Rotor Blade Mode Shape Emulation
,”
AIAA
Paper No.
2019
2001
.10.2514/6.2019-2001
39.
Mackiewicz
,
A.
, and
Ratajczak
,
W.
,
1993
, “
Principal Components Analysis (PCA)
,”
Comput. Geosci.
,
19
(
3
), pp.
303
342
.10.1016/0098-3004(93)90090-R
40.
Carassale
,
L.
,
Cavicchi
,
A.
,
Bruzzone
,
S.
, and
Marre Brunenghi
,
M.
,
2019
, “
Probabilistic Response of a Bladed Disk With Uncertain Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101024
.10.1115/1.4044642
41.
Li
,
J.
,
Wong
,
Y.
,
Zhao
,
Q.
, and
Kankanhalli
,
M. S.
,
2017
, “
Attention Transfer From Web Images for Video Recognition
,”
Proceedings of the 25th ACM International Conference on Multimedia
, Mountain View, CA, Oct. 23–27, pp.
1
9
.10.1145/3123266.3123432
42.
Zuo
,
K.
,
Ye
,
Z.
,
Zhang
,
W.
,
Yuan
,
X.
, and
Zhu
,
L.
,
2023
, “
Fast Aerodynamics Prediction of Laminar Airfoils Based on Deep Attention Network
,”
Phys. Fluids
,
35
(
3
), p.
037127
.10.1063/5.0140545
43.
Hendrycks
,
D.
, and
Gimpel
,
K.
,
2016
, “
Gaussian Error Linear Units (GELUs)
,” arXiv preprint
arXiv:1606.08415
.10.48550/arXiv.1606.08415
44.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
International Conference on Machine Learning, PMLR
, Lille, France, July 6–11, pp.
448
456
.https://dl.acm.org/doi/10.5555/3045118.3045167
45.
Reddi
,
S. J.
,
Kale
,
S.
, and
Kumar
,
S.
,
2018
, “
On the Convergence of Adam and Beyond
,”
International Conference on Learning Representations
, Vancouver, BC, Canada, Apr. 30–May 3.https://openreview.net/pdf?id=ryQu7f-RZ
46.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
125
(
4
), pp.
623
631
.10.1115/1.1622710
47.
Pan
,
W.
,
Zhang
,
M.
, and
Tang
,
G.
,
2020
, “
Blade Arrangement Optimization for Mistuned Bladed Disk Based on Gaussian Process Regression and Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2)
, p.
021008
.10.1115/1.4045553
48.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
72
.10.1038/scientificamerican0792-66
49.
Zalzala
,
A. M.
,
Fleming
,
P. J.
, and
Fleming
,
P.
,
1997
, “
Genetic Algorithms in Engineering Systems
,” IET, Glasgow, UK, Vol. 55.
You do not currently have access to this content.