Abstract

Advanced adiabatic compressed air energy storage (AA-CAES) starts and shuts down frequently. The default operation of the high-pressure compressor (HP) connected to the cavern is to reduce the speed of the inverter motor during shutdown. Whether or not the default speed strategy is safe has yet to be focused on. To this end, a detailed charging process comprising three series of centrifugal compressors with intercoolers was constructed within the framework of unisimdesign. The safety measures were meticulously considered by integrating antisurge circuits, vent valves, and check valves. Proportional–integral (PI) controllers were allocated to the primary component to govern the shutdown procedure. The speed strategy of the HP inverter motor during the load shedding stage is the focus of research. Six speed strategies, including decreasing speed, constant speed, and increasing speed, were discussed, respectively. The discussion focused on changes made to air injection, inlet mass flow of the HP, inlet and outlet pressure of both the middle-pressure compressor (MP) and HP, and energy efficiency. The study found that implementing the minimum allowable speed for the inverter motor speed (IMS) and increasing speed during the load shedding stage can cause fluctuations in the air injection. As IMS increases at the end of the load shedding stage, the pressure anomalies at the MP outlet and the HP inlet weaken, and the shutdown process's energy efficiency improves. The HP inlet flow fluctuations caused by various strategies were within an acceptable range. This study reveals that there is a mutual influence between components in the charging process of AA-CAES. An appropriate speed strategy for the HP inverter motor can mitigate the operational hazards. The results of this study can provide guidance for similar AA-CAES shutdowns.

References

1.
Huang
,
L.
,
Guo
,
H.
,
Xu
,
Y.
,
Zhou
,
X.
, and
Chen
,
H.
,
2023
, “
Influence of Design Point on Off-Design and Cycling Performance of Compressed Air Energy Storage Systems-From Key Processes to the Whole System
,”
J. Energy Storage
,
57
, p.
106181
.10.1016/j.est.2022.106181
2.
Rahbari
,
H. R.
,
Arabkoohsar
,
A.
, and
Jannatabadi
,
M.
,
2021
, “
Energy, Exergy, Economic and Environmental Analyses of Air-Based High-Temperature Thermal Energy and Electricity Storage: Impacts of Off-Design Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070901
.10.1115/1.4049453
3.
Huang
,
J.
,
Xu
,
Y.
,
Guo
,
H.
,
Geng
,
X.
, and
Chen
,
H.
,
2022
, “
Dynamic Performance and Control Scheme of Variable-Speed Compressed Air Energy Storage
,”
Appl. Energy
,
325
, p.
119338
.10.1016/j.apenergy.2022.119338
4.
Bai
,
J.
,
Wei
,
W.
,
Chen
,
L.
, and
Mei
,
S.
,
2021
, “
Rolling-Horizon Dispatch of Advanced Adiabatic Compressed Air Energy Storage Based Energy Hub Via Data-Driven Stochastic Dynamic Programming
,”
Energy Convers. Manage.
,
243
, p.
114322
.10.1016/j.enconman.2021.114322
5.
Li
,
Y.
,
Miao
,
S.
,
Luo
,
X.
,
Yin
,
B.
,
Han
,
J.
, and
Wang
,
J.
,
2020
, “
Dynamic Modelling and Techno-Economic Analysis of Adiabatic Compressed Air Energy Storage for Emergency Back-Up Power in Supporting Microgrid
,”
Appl. Energy
,
261
, p.
114448
.10.1016/j.apenergy.2019.114448
6.
Guo
,
H.
,
Xu
,
Y.
,
Zhu
,
Y.
,
Chen
,
H.
, and
Lin
,
X.
,
2022
, “
Unsteady Characteristics of Compressed Air Energy Storage Systems With Thermal Storage From Thermodynamic Perspective
,”
Energy
,
244
, p.
122969
.10.1016/j.energy.2021.122969
7.
Guo
,
C.
,
Xu
,
Y.
,
Guo
,
H.
,
Zhang
,
X.
,
Lin
,
X.
,
Wang
,
L.
,
Zhang
,
Y.
, and
Chen
,
H.
,
2019
, “
Comprehensive Exergy Analysis of the Dynamic Process of Compressed Air Energy Storage System With Low-Temperature Thermal Energy Storage
,”
Appl. Therm. Eng.
,
147
, pp.
684
693
.10.1016/j.applthermaleng.2018.10.115
8.
Guo
,
H.
,
Xu
,
Y.
,
Zhang
,
X.
,
Zhu
,
Y.
, and
Chen
,
H.
,
2021
, “
Finite-Time Thermodynamics Modeling and Analysis on Compressed Air Energy Storage Systems With Thermal Storage
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110656
.10.1016/j.rser.2020.110656
9.
Tola
,
V.
,
Marcello
,
F. C.
,
Cocco
,
D.
, and
Cau
,
G.
,
2022
, “
Performance Assessment of Low-Temperature A-CAES (Adiabatic Compressed Air Energy Storage) Plants
,”
J. Therm. Sci.
,
31
(
5
), pp.
1279
1292
.10.1007/s11630-022-1632-7
10.
Guo
,
H.
,
Xu
,
Y.
,
Zhang
,
X.
,
Liang
,
Q.
,
Wang
,
S.
, and
Chen
,
H.
,
2021
, “
Dynamic Characteristics and Control of Supercritical Compressed Air Energy Storage Systems
,”
Appl. Energy
,
283
, p.
116294
.10.1016/j.apenergy.2020.116294
11.
Mucci
,
S.
,
Bischi
,
A.
,
Briola
,
S.
, and
Baccioli
,
A.
,
2021
, “
Small-Scale Adiabatic Compressed Air Energy Storage: Control Strategy Analysis Via Dynamic Modelling
,”
Energy Convers. Manage.
,
243
, p.
114358
.10.1016/j.enconman.2021.114358
12.
Chen
,
L.
,
Zhang
,
L.
,
Yang
,
H.
,
Xie
,
M.
, and
Ye
,
K.
,
2022
, “
Dynamic Simulation of a Re-Compressed Adiabatic Compressed Air Energy Storage (RA-CAES) System
,”
Energy
,
261
, p.
125351
.10.1016/j.energy.2022.125351
13.
Xiao
,
F.
,
Chen
,
W.
,
Zhang
,
B.
,
Zhang
,
T.
,
Xie
,
N.
,
Wang
,
Z.
,
Chen
,
H.
, and
Xue
,
X.
,
2023
, “
A Novel Constant Power Operation Mode of Constant Volume Expansion Process for AA-CAES: Regulation Strategy, Dynamic Simulation, and Comparison
,”
Energy
,
284
, p.
128594
.10.1016/j.energy.2023.128594
14.
Bai
,
J.
,
Liu
,
F.
,
Xue
,
X.
,
Wei
,
W.
,
Chen
,
L.
,
Wang
,
G.
, and
Mei
,
S.
,
2021
, “
Modelling and Control of Advanced Adiabatic Compressed Air Energy Storage Under Power Tracking Mode Considering Off-Design Generating Conditions
,”
Energy
,
218
, p.
119525
.10.1016/j.energy.2020.119525
15.
Li
,
P.
,
Yang
,
C.
,
Sun
,
L.
,
Xiang
,
J.
,
Wen
,
X.
,
Zhong
,
J.
, and
Deng
,
T.
,
2020
, “
Dynamic Characteristics and Operation Strategy of the Discharge Process in Compressed Air Energy Storage Systems for Applications in Power Systems
,”
Int. J. Energy Res.
,
44
(
8
), pp.
6363
6382
.10.1002/er.5362
16.
Bai
,
J.
,
Wei
,
W.
,
Guo
,
Z.
,
Chen
,
L.
, and
Mei
,
S.
,
2023
, “
Two-Timescale Coordinated Operation of Wind-Advanced Adiabatic Compressed Air Energy Storage System: A Bilevel Stochastic Dynamic Programming Method
,”
J. Energy Storage
,
67
, p.
107502
.10.1016/j.est.2023.107502
17.
Chen
,
W.
,
Bai
,
J.
,
Wang
,
G.
,
Xie
,
N.
,
Ma
,
L.
,
Wang
,
Y.
,
Zhang
,
T.
, and
Xue
,
X.
,
2023
, “
First and Second Law Analysis and Operational Mode Optimization of the Compression Process for an Advanced Adiabatic Compressed Air Energy Storage Based on the Established Comprehensive Dynamic Model
,”
Energy
,
263
, p.
125882
.10.1016/j.energy.2022.125882
18.
Luo
,
X.
,
Dooner
,
M.
,
He
,
W.
,
Wang
,
J.
,
Li
,
Y.
,
Li
,
D.
, and
Kiselychnyk
,
O.
,
2018
, “
Feasibility Study of a Simulation Software Tool Development for Dynamic Modelling and Transient Control of Adiabatic Compressed Air Energy Storage With Its Electrical Power System Applications
,”
Appl. Energy
,
228
, pp.
1198
1219
.10.1016/j.apenergy.2018.06.068
19.
Ghalelou
,
A. N.
,
Fakhri
,
A. P.
,
Nojavan
,
S.
,
Majidi
,
M.
, and
Hatami
,
H.
,
2016
, “
A Stochastic Self-Scheduling Program for Compressed Air Energy Storage (CAES) of Renewable Energy Sources (RESs) Based on a Demand Response Mechanism
,”
Energy Convers. Manage.
,
120
, pp.
388
396
.10.1016/j.enconman.2016.04.082
20.
Szablowski
,
L.
,
Krawczyk
,
P.
,
Badyda
,
K.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Bujalski
,
W.
,
2017
, “
Energy and Exergy Analysis of Adiabatic Compressed Air Energy Storage System
,”
Energy
,
138
, pp.
12
18
.10.1016/j.energy.2017.07.055
21.
Scotti Del Greco
,
A.
, and
Tapinassi
,
L.
,
2014
, “
On the Combined Effect on Operating Range of Adjustable Inlet Guide Vanes and Variable Speed in Process Multistage Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
082601
.10.1115/1.4026621
22.
Guo
,
H.
,
Xu
,
Y.
,
Guo
,
C.
,
Zhang
,
Y.
,
Hou
,
H.
, and
Chen
,
H.
,
2019
, “
Off-Design Performance of CAES Systems With Low-Temperature Thermal Storage Under Optimized Operation Strategy
,”
J. Energy Storage
,
24
, p.
100787
.10.1016/j.est.2019.100787
23.
Polanco Pinerez
,
G.
,
Valencia Ochoa
,
G.
, and
Duarte-Forero
,
J.
,
2021
, “
Energy, Exergy, and Environmental Assessment of a Small-Scale Solar Organic Rankine Cycle Using Different Organic Fluids
,”
Heliyon
,
7
(
9
), p.
e07947
.10.1016/j.heliyon.2021.e07947
24.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis: Part I—Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.10.1115/1.2841315
25.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis: Part II—Numerical Simulation and Dynamic Control Parameters Evaluation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
312
320
.10.1115/1.2841316
26.
Botros
,
K. K.
,
2011
, “
Single Versus Dual Recycle System Dynamics of High Pressure Ratio, Low Inertia Centrifugal Compressor Stations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122402
.10.1115/1.4004114
27.
Rammler
,
R.
,
1994
, “
Considerations for Advanced Centrifugal Compressor Control
,”
ISA Trans.
,
33
(
2
), pp.
153
157
.10.1016/0019-0578(94)90047-7
28.
Brun
,
K.
,
Nored
,
M. G.
, and
Kurz
,
R.
,
2015
, “
Impact of Piping Impedance and Acoustic Characteristics on Centrifugal Compressor Surge and Operating Range
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032603
.10.1115/1.4028464
You do not currently have access to this content.