Abstract

A newly developed gas turbine combustor system based on the swirl-assisted jet-stabilized concept using Jet A-1 and natural gas as reference fuel is tested under wet conditions to evaluate its combustion characteristics in the presence of steam. The effect of steam injection into the gas turbine combustor under both spray and superheated liquid fuel injection conditions is studied experimentally on an atmospheric test rig. The experiments are conducted at atmospheric pressure and an elevated combustion air temperature of 305 °C. To evaluate the effect of steam injection on combustion performance, the water-to-gas ratio (WGR) is varied from 0% to 32%. Even at very high WGR levels, the results show virtually no combustion thermoacoustic instability during operation. With increasing WGR = 0–16% and at stoichiometric condition, NOx reductions of −82% to −100% were observed during Jet A-1 and natural gas combustion, respectively. It is shown that the reduction of the combustion zone temperature due to the steam acting as a heat sink is the main cause of the NOx decrease. For both wet and dry conditions, CO levels remained fairly similar. Both flame length and flame height above the burner increased with increasing WGR. This is due to the reduced reactivity of the fuel–air mixture. The operating range of the burner remained fairly constant for Jet A-1 until WGR = 20% while it decreased significantly with increasing WGR for natural gas combustion. While the effect of the WGR on CO was modest, the greatest effect of the WGR was on the heat release zone intensity at a constant air to fuel ratio. In reducing the NOx levels of Jet A-1 and natural gas combustion, both thermal and chemical effects of steam injection were observed. However, steam acting as a heat sink and lowering the flame temperature, thereby reducing the thermal NO formation rate, was the dominant factor in NOx reduction.

References

1.
Krill
,
W. V.
,
Kesselring
,
J. P.
, and
Chu
,
E. K.
,
1979
, “
Catalytic Combustion for Gas Turbine Applications
,”
ASME
Paper No. 79-GT-188.10.1115/79-GT-188
2.
Davis
,
L. B.
, and
Washam
,
R. M.
,
1989
, “Development of a Dry Low NOx Combustor,”
ASME
Paper No. 89-GT-255.10.1115/89-GT-255
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
: Taylor & Francis Group,
Boca Raton, FL
.
4.
Shen
,
Y.
,
Ghulam
,
M.
,
Zhang
,
K.
,
Gutmark
,
E.
, and
Duwig
,
C.
,
2020
, “
Vortex Breakdown of the Swirling Flow in a Lean Direct Injection Burner
,”
Phys. Fluids
,
32
(
12
), p.
125118
.10.1063/5.0028838
5.
Marek
,
C. J.
,
Smith
,
T. D.
, and
Kundu
,
K.
,
2005
, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,”
AIAA
Paper No. 2005-3776.10.2514/6.2005-3776
6.
Behrendt
,
T.
,
Heinze
,
J.
, and
Hassa
,
C.
,
2003
, “Experimental Investigation of a New LPP Injector Concept for Aero Engines at Elevated Pressures,”
ASME
Paper No. GT2003-38444.10.1115/GT2003-38444
7.
Nakamura
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
G. S.
,
2008
, “
The Effect of Liquid-Fuel Preparation on Gas Turbine Emissions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021506
.10.1115/1.2771564
8.
Hatch
,
M.
,
Sowa
,
W.
,
Samuelsen
,
G.
, and
Holdeman
,
J.
,
1995
, “
Influence of Geometry and Flow Variations on NO Formation in the Quick Mixer of a Staged Combustor
,” NASA, Washington, DC, NASA Technical Memorandum Paper No.
NAS 1.15:105639
.https://core.ac.uk/download/pdf/42778589.pdf
9.
Jeong
,
G.
, and
Ahn
,
K.
,
2021
, “
One-Dimensional Analysis of Double Annular Combustor for Reducing Harmful Emissions
,”
Energies
,
14
(
13
), p.
3930
.10.3390/en14133930
10.
Mongia
,
H.
,
2003
, “TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions,”
AIAA
Paper No. 2003–2657.10.2514/6.2003-2657
11.
Hiestermann
,
M.
,
Konle
,
M.
, and
de Guillebon
,
L.
,
2022
, “
Numerical Investigation of the Effect of High Steam Loads on the Combustion of an Academic Premixed Swirl Stabilized Combustor
,”
Proceedings of Global Power & Propulsion Society
, Chania, Zurich, Switzerland, Sept. 12–13, Paper No. GPPS-TC-2022-0094.10.33737/gpps22-tc-94
12.
Pavri
,
R.
, and
Moore
,
G. D.
,
2001
, “
Gas Turbine Emissions and Control: GE Energy Services: GER-4211
,” GE Power Systems, Atlanta, GA, pp.
1
20
.https://www.gevernova.com/content/dam/gepowernew/global/en_US/downloads/gas-new-site/resources/reference/ger-4211-gas-turbineemissions-and-control.pdf
13.
Kaiser
,
S.
,
Schmitz
,
O.
,
Ziegler
,
P.
, and
Klingels
,
H.
,
2022
, “
The Water-Enhanced Turbofan as Enabler for Climate-Neutral Aviation
,”
Appl. Sci.
,
12
(
23
), p.
12431
.10.3390/app122312431
14.
Marcellan
,
A.
,
Henke
,
M.
,
Schuldt
,
S.
,
Maas
,
P.
, and
Göhler-Stroh
,
A.
,
2022
, “
A Numerical Investigation of the Water-Enhanced Turbofan A Numerical Investigation of the Water-Enhanced Turbofan Laboratory-Scale Ground Demonstrator
,”
AIAA
Paper No. 2022-0062.10.2514/6.2022-0062
15.
Degges
,
M. J.
,
Eric Boyer
,
J.
,
Kuo
,
K. K.
, and
Basini
,
L.
,
2010
, “
Influence of Steam on the Flammability Limits of Premixed Natural Gas/Oxygen/Steam Mixtures
,”
Chem. Eng. J.
,
165
(
2
), pp.
633
638
.10.1016/j.cej.2010.09.032
16.
Lefebvre
,
A. H.
,
1995
, “The Role of Fuel Preparation in Low Emissions Combustion,”
ASME J. Eng. Gas Turbines Power
, 117(4), pp.
617
654
.10.1115/1.2815449
17.
Izadi
,
S.
,
Zanger
,
J.
,
Baggio
,
M.
,
Seliger-Ost
,
H.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2024
, “
Experimental Investigation of the Effect of Superheated Liquid Fuel Injection On the Combustion Characteristics of Lean Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051012
.10.1115/1.4063772
18.
Izadi
,
S.
,
Zanger
,
J.
,
Seliger-Ost
,
H.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2024
, “
Experimental Evaluation of Combustor Configuration's Impact on a Swirl-Assisted Jet-Stabilized Combustor Performance
,”
ASME J. Eng. Gas Turbines Power
, pp.
1
13
.10.1115/1.4066234
19.
Izadi
,
S.
,
Seliger-Ost
,
H.
,
Zanger
,
J.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2024
, “
Analysis of Liquid Fuel Effect on Swirl-Assisted Jet-Stabilized Combustor Performance
,”
ASME
Paper No. GT2024-127721.10.1115/GT2024-127721
20.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Zinsmeister
,
J.
,
Methling
,
T.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-III: Fuel Modeling and Surrogate Strategy
,”
Fuel
,
302
, p.
120737
.10.1016/j.fuel.2021.120737
21.
Lefebvre
,
A. H.
, and
McDonell
,
V. G.
,
2017
,
Atomization and Sprays
,
CRC Press Taylor & Francis Group
,
Boca Raton, London, New York
.
22.
Yang
,
W.
, and
Blasiak
,
W.
,
2003
, “Effects of Fuel Temperature and Flame Locations on Emissions of Nitrogen Oxides in Combustion With High Temperature Air,”
Scand. J. Metall.
, 34, pp.
7
15
.https://www.researchgate.net/publication/265928009_Effects_of_fuel_temperature_and_flame_locations_on_emissions_of_nitrogen_oxides_in_combustion_with_high_temperature_air
23.
Yin
,
Z.
,
Kutne
,
P.
,
Eichhorn
,
J.
, and
Meier
,
W.
,
2021
, “
Experimental Investigations of Superheated and Supercritical Injections of Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041016
.10.1115/1.4049863
24.
Lamanna
,
G.
,
Kamoun
,
H.
,
Weigand
,
B.
, and
Steelant
,
J.
,
2014
, “
Towards a Unified Treatment of Fully Flashing Sprays
,”
Int. J. Multiphase Flow
,
58
, pp.
168
184
.10.1016/j.ijmultiphaseflow.2013.08.010
25.
Rachner
,
M.
,
1998
,
Die Stoffeigenschaften Von Kerosin Jet A-1
,
Dlr Abt. Unternehmensorganisation und –information
, Köln-Porz, Germany.
26.
Reid Robert
,
C.
,
Prausnitz John
,
M.
, and
Poling Bruce
,
E.
,
1987
, “
The Properties of Gases and Liquids
,” McGraw-Hill, New York.
27.
Leo
,
M. D.
,
Saveliev
,
A.
,
Kennedy
,
L. A.
, and
Zelepouga
,
S. A.
,
2007
, “
OH and CH Luminescence in Opposed Flow Methane Oxy-Flames
,”
Combust. Flame
,
149
(
4
), pp.
435
447
.10.1016/j.combustflame.2007.01.008
28.
Kathrotia
,
T.
,
2011
, “
Reaction Kinetics Modeling of OH(∗), CH(∗), and C2(∗) Chemiluminescence
,”
Ph.D. dissertation
,
Ruprecht-Karls-Universität
,
Heidelberg, Germany
.https://www.researchgate.net/publication/225021959_Reaction_Kinetics_Modeling_of_OH_CH_and_C2_Chemiluminescence
29.
Tinaut
,
F. V.
,
Reyes
,
M.
,
Giménez
,
B.
, and
Pastor
,
J. V.
,
2011
, “
Measurements of OH* and CH* Chemiluminescence in Premixed Flames in a Constant Volume Combustion Bomb Under Autoignition Conditions
,”
Energy Fuels
,
25
(
1
), pp.
119
129
.10.1021/ef1013456
30.
Zanger
,
J.
,
2016
, “
Experimentelle Charakterisierung Eines Atmosphärisch Betriebenen, Jet-Stabilisierten Mikrogasturbinenbrenners Für Erdgas
,” Ph.D. thesis,
Universität
,
Stuttgart
.
31.
Bower
,
H. E.
,
Schwärzle
,
A.
,
Grimm
,
F.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2019
, “
Experimental Analysis of a Micro Gas Turbine Combustor Optimized for Flexible Operation With Various Gaseous Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031015
.10.1115/1.4044901
32.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
, New York.
33.
Chong
,
C. T.
, and
Ng
,
J.-H.
,
2021
,
Biojet Fuel in Aviation Applications: Production, Usage and Impact of Biofuels
,
Elsevier
, Amsterdam, The Netherlands.
34.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes.
” Version 3.0.0.10.5281/zenodo.8137090
35.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Naumann
,
C.
,
Richter
,
S.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-II: Reaction Model for Fuel Surrogate
,”
Fuel
,
302
, p.
120736
.10.1016/j.fuel.2021.120736
36.
Mohapatra
,
S.
,
Mohapatro
,
M. B.
,
Pasha
,
A.
,
Alsulami
,
R.
,
Dash
,
S.
, and
Reddy
,
V.
,
2022
, “
Adaptability of Different Mechanisms and Kinetic Study of Methane Combustion in Steam Diluted Environments
,”
Sci. Rep.
,
12
(
1
), p.
4577
.10.1038/s41598-022-08648-5
37.
Snyder
,
T. S.
,
Rosfjord
,
T. J.
,
McVey
,
J. B.
, and
Chiappetta
,
L. M.
,
1994
, “Comparison of Liquid Fuel/Air Mixing and NOx Emissions for a Tangential Entry Nozzle,“
ASME
Paper No. 94-GT-283.10.1115/94-GT-283
38.
Le Cong
,
T.
, and
Dagaut
,
P.
,
2009
, “
Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NOx
,”
Energy Fuels
,
23
(
2
), pp.
725
734
.10.1021/ef800832q
39.
Göke
,
S.
,
2012
, “
Ultra Wet Combustion: An Experimental and Numerical Study
,” Doctoral thesis.
40.
Lellek
,
S.
, and
Sattelmayer
,
T.
,
2015
, “
Influence of Water Injection on Heat Release Distribution, Lean Blowout and Emissions of a Premixed Swirl Flame in a Tubular Combustor
,”
ASME
Paper No. GT2015-42602.10.1115/GT2015-42602
41.
Müller-Dethlefs
,
K.
, and
Schlader
,
A.
,
1976
, “
The Effect of Steam on Flame Temperature, Burning Velocity and Carbon Formation in Hydrocarbon Flames
,”
Combust. Flame
,
27
, pp.
205
215
.10.1016/0010-2180(76)90023-7
42.
Babkin
,
V. S.
, and
V'yun
,
A. V.
,
1971
, “
Effect of Water Vapor on the Normal Burning Velocity of a Methane-Air Mixture at High Pressures
,”
Combust., Explos. Shock Waves
,
7
(
3
), pp.
339
341
.10.1007/BF00742820
43.
Pathania
,
R. S.
,
Helou
,
I. E.
,
Skiba
,
A. W.
,
Ciardiello
,
R.
, and
Mastorakos
,
E.
,
2023
, “
Lean Blow-Off of Premixed Swirl-Stabilised Flames With Vapourised Kerosene
,”
Proc. Combust. Inst.
,
39
(
2
), pp.
2229
2238
.10.1016/j.proci.2022.10.006
44.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
,
2007
, “
Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
404
410
.10.1115/1.2436568
You do not currently have access to this content.