Abstract

Sustainable aviation fuels are a major candidate to reduce pollutant emissions in future aeronautical engines. Recently, the use of hydrogen as a fuel has gained a high interest partly because its combustion is free from carbon dioxide, a greenhouse gas, and produces few pollutants, mainly nitrogen oxides (NOx). Over the last decades, efforts on numerical methods for combustion simulation in aero-engines have largely been focused on kerosene-air combustion. However, the current transition may have a significant impact on the computational methodologies for combustor design. Hydrogen defines novel modeling issues and challenges the current state of art on numerical methodologies. The current study presents a numerical investigation of a hydrogen–air burner using large-eddy simulations (LES) with a focus on NOx prediction. The considered configuration is a two-staged combustor, similar to the well-known RQL (Rich-Quench-Lean) technology, supplied by a single coaxial injector characterized experimentally. Two combustion models are investigated: (i) tabulated chemistry based on premixed flamelets (ii) transported chemistry description by using a 21-species chemical scheme. Numerical results are compared with experimental data (NOx concentrations, temperature distributions, pressure losses). A focus on model predictions is carried out. Results show a good agreement to predict the main flow characteristics and the premixed flame position over different operating points and geometries for both frameworks. In contrast, NOx emissions are more sensitive: while the overall trend is well captured, the quantification is more scattered. Finally, an in-depth analysis is proposed to link NOx production with the nonpremixed flame size.

References

1.
Cecere
,
D.
,
Giacomazzi
,
E.
, and
Ingenito
,
A.
,
2014
, “
A Review on Hydrogen Industrial Aerospace Applications
,”
Int. J. Hydrogen Energy
,
39
(
20
), pp.
10731
10747
.10.1016/j.ijhydene.2014.04.126
2.
Giusti
,
A.
, and
Mastorakos
,
E.
,
2019
, “
Turbulent Combustion Modelling and Experiments: Recent Trends and Developments
,”
Flow, Turbul. Combust.
,
103
(
4
), pp.
847
869
.10.1007/s10494-019-00072-6
3.
Masri
,
A. R.
,
2021
, “
Challenges for Turbulent Combustion
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
121
155
.10.1016/j.proci.2020.07.144
4.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2017
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3817
3825
.10.1016/j.proci.2016.07.027
5.
Giusti
,
A.
,
Mastorakos
,
E.
,
Hassa
,
C.
,
Heinze
,
J.
,
Magens
,
E.
, and
Zedda
,
M.
,
2018
, “
Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061506
.10.1115/1.4038025
6.
Langella
,
I.
,
Heinze
,
J.
,
Behrendt
,
T.
,
Voigt
,
L.
,
Swaminathan
,
N.
, and
Zedda
,
M.
,
2019
, “
Turbulent Flame Shape Switching at Conditions Relevant for Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011026
.10.1115/1.4044944
7.
Puggelli
,
S.
,
Leparoux
,
J.
,
Brunet
,
C.
,
Mercier
,
R.
,
Liberatori
,
L.
,
Zurbach
,
S.
,
Cabot
,
G.
, and
Grisch
,
F.
,
2023
, “
Application of an Automatic Mesh Convergence Procedure for the Large Eddy Simulation of a Multi-Point Injection System
,”
ASME
Paper No. GTP-22-1544.10.1115/1.4056635
8.
Cabra
,
R.
,
Myhrvold
,
T.
,
Chen
,
J. Y.
,
Dibble
,
R. W.
,
Karpetis
,
A. N.
, and
Barlow
,
R. S.
,
2002
, “
Simultaneous Laser Raman-Rayleigh-Lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1881
1888
.10.1016/S1540-7489(02)80228-0
9.
Cheng
,
T. S.
,
Wehrmeyer
,
J. A.
, and
Pitz
,
R. W.
,
2007
, “
Conditional Analysis of Lifted Hydrogen Jet Diffusion Flame Experimental Data and Comparison to Laminar Flame Solutions
,”
Combust. Flame
,
150
(
4
), pp.
340
354
.10.1016/j.combustflame.2007.04.013
10.
Agostinelli
,
P. W.
,
Laera
,
D.
,
Chterev
,
I.
,
Boxx
,
I.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2022
, “
On the Impact of H2-Enrichment on Flame Structure and Combustion Dynamics of a Lean Partially-Premixed Turbulent Swirling Flame
,”
Combust. Flame
,
241
, p.
112120
.10.1016/j.combustflame.2022.112120
11.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
09
.10.1115/1.4031181
12.
Marragou
,
S.
,
Magnes
,
H.
,
Aniello
,
A.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2023
, “
Experimental Analysis and Theoretical Lift-Off Criterion for H2/Air Flames Stabilized on a Dual Swirl Injector
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4345
4354
.10.1016/j.proci.2022.07.255
13.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
14.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
15.
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2007
, “
Large Eddy Simulation of Autoignition With a Subgrid Probability Density Function Method
,”
Combust. Flame
,
150
(
3
), pp.
170
187
.10.1016/j.combustflame.2007.04.003
16.
Han
,
W.
,
Raman
,
V.
, and
Chen
,
Z.
,
2016
, “
LES/PDF Modeling of Autoignition in a Lifted Turbulent Flame: Analysis of Flame Sensitivity to Differential Diffusion and Scalar Mixing Time-Scale
,”
Combust. Flame
,
171
, pp.
69
86
.10.1016/j.combustflame.2016.05.027
17.
Benim
,
A. C.
,
Pfeiffelmann
,
B.
,
Ocłoń
,
P.
, and
Taler
,
J.
,
2019
, “
Computational Investigation of a Lifted Hydrogen Flame With LES and FGM
,”
Energy
,
173
, pp.
1172
1181
.10.1016/j.energy.2019.02.133
18.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Both
,
A.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vazquez
,
M.
, and
Houzeaux
,
G.
,
2020
, “
Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
479
507
.10.1007/s10494-019-00106-z
19.
Laera
,
D.
,
Agostinelli
,
P. W.
,
Selle
,
L.
,
Cazeres
,
Q.
,
Oztarlik
,
G.
,
Schuller
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Stabilization Mechanisms of CH4 Premixed Swirled Flame Enriched With a Non-Premixed Hydrogen Injection
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6355
6363
.10.1016/j.proci.2020.06.378
20.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
21.
Minakawa
,
K.
, and
Yuasa
,
S.
,
2007
, “
Study on Hydrogen Combustors With Two-Staged Combustion Method for Micro Gas Turbines
,”
J. Environ. Eng.
,
2
(
3
), pp.
590
600
.10.1299/jee.2.590
22.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
C. R. Méc.
,
339
(
2–3
), pp.
141
148
.10.1016/j.crme.2010.12.001
23.
Kraushaar
,
M.
,
2011
, “
Application of the Compressible and Low-Mach Number Approaches to Large Eddy Simulation of Turbulent Flows in Aero-Engines
,”
Ph.D. thesis
,
INPT, Toulouse, France
.https://theses.hal.science/file/index/docid/711480/filename/Kraushaar_.pdf
24.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
25.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
26.
Roe
,
P. L.
,
1985
, “
Some Contributions to the Modeling of Discontinuous Flows
,”
Large-Scale Comput. Fluid Mech.
, 22, pp.
163
193
.https://www.researchgate.net/publication/328942112_DOC111318-11132018121219Some_Contributions_to_the_Numerical_Modelling_of_Discontinuous_Flow
27.
Gicquel
,
O.
,
Darabiha
,
N.
, and
Thévenin
,
D.
,
2000
, “
Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1901
1908
.10.1016/S0082-0784(00)80594-9
28.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion Part i: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
29.
Yamashita
,
H.
,
Shimada
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symposium (International) on Combustion
,
26
(
1
), pp.
27
34
.10.1016/S0082-0784(96)80196-2
30.
Cuenot
,
B.
,
Shum-Kivan
,
F.
, and
Blanchard
,
S.
,
2022
, “
The Thickened Flame Approach for Non-Premixed Combustion: Principles and Implications for Turbulent Combustion Modeling
,”
Combust. Flame
,
239
, p.
111702
.10.1016/j.combustflame.2021.111702
31.
Pecquery
,
F.
,
Moureau
,
V.
,
Lartigue
,
G.
,
Vervisch
,
L.
, and
Roux
,
A.
,
2014
, “
Modelling Nitrogen Oxide Emissions in Turbulent Flames With Air Dilution: Application to LES of a Non-Premixed Jet-Flame
,”
Combust. Flame
,
161
(
2
), pp.
496
509
.10.1016/j.combustflame.2013.09.018
32.
UC SanDiego,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” UC San Diego, La Jolla, CA, accessed Mar. 22, 2024, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
33.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1964
,
Molecular Theory of Gases and Liquids
, Wiley, Hoboken, NJ.
34.
Mercier
,
R.
,
Auzillon
,
P.
,
Moureau
,
V.
,
Darabiha
,
N.
,
Gicquel
,
O.
,
Veynante
,
D.
, and
Fiorina
,
B.
,
2014
, “
LES Modeling of the Impact of Heat Losses and Differential Diffusion on Turbulent Stratified Flame Propagation: Application to the TU Darmstadt Stratified Flame
,”
Flow, Turbul. Combust.
,
93
(
2
), pp.
349
381
.10.1007/s10494-014-9550-8
35.
Kuenne
,
G.
,
Seffrin
,
F.
,
Fuest
,
G.
,
Stahler
,
T.
,
Ketelheun
,
A.
,
Geyer
,
D.
,
Janicka
,
J.
, and
Dreizler
,
A.
,
2012
, “
Experimental and Numerical Analysis of a Lean Premixed Stratified Burner Using 1D Raman/Rayleigh Scattering and Large Eddy Simulation
,”
Combust. Flame
,
159
(
8
), pp.
2669
2689
.10.1016/j.combustflame.2012.02.010
36.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2021
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed Mar. 22, 2024, https://www.cantera.org
37.
Schlup
,
J.
, and
Blanquart
,
G.
,
2019
, “
Reproducing Curvature Effects Due to Differential Diffusion in Tabulated Chemistry for Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2511
2518
.10.1016/j.proci.2018.06.211
38.
Echekki
,
T.
, and
Mungal
,
M. G.
,
1991
, “
Flame Speed Measurements at the Tip of a Slot Burner: Effects of Flame Curvature and Hydrodynamic Stretch
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
455
461
.10.1016/S0082-0784(06)80291-2
39.
Domingo
,
P.
,
Vervisch
,
L.
,
Payet
,
S.
, and
Hauguel
,
R.
,
2005
, “
DNS of a Premixed Turbulent V Flame and LES of a Ducted Flame Using a FSD-PDF Subgrid Scale Closure With FPI-Tabulated Chemistry
,”
Combust. Flame
,
143
(
4
), pp.
566
586
.10.1016/j.combustflame.2005.08.023
40.
Coussement
,
A.
,
Schmitt
,
T.
, and
Fiorina
,
B.
,
2015
, “
Filtered Tabulated Chemistry for Non-Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1183
1190
.10.1016/j.proci.2014.06.010
41.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.10.1016/j.combustflame.2009.09.015
42.
Dillon
,
S.
,
Mercier
,
R.
, and
Fiorina
,
B.
,
2023
, “
Large-Eddy-Simulation of Turbulent Non-Premixed Hydrogen Combustion Using the Filtered Tabulated Chemistry Approach
,”
ASME
Paper No. GTP-23-1565. 10.1115/GTP-23-1565
You do not currently have access to this content.