Abstract

Piston surface temperature is an important factor in the reduction of harmful emissions in modern gasoline direct injection (GDI) engines. In transient operation, the piston surface temperature can change rapidly, increasing the risk of fuel puddling. The prediction of the piston surface temperature can provide the means to significantly improve multiple-pulse fuel injection control strategies through the avoidance of fuel puddling. It could also be used to intelligently control the piston cooling jet (PCJ), which is common in modern engines. Considerable research has been undertaken to identify generalized engine heat transfer correlations and to predict piston and cylinder wall surface temperatures during operation. Most of these correlations require in-cylinder combustion pressure as an input, as well as the identification of numerous model parameters. These requirements render such an approach impractical. In this study, the authors have developed a thermodynamic model of piston surface temperature based on the global energy balance (GEB) methodology, which includes the effect of PCJ activation. The advantages are a simple structure and no requirement for in-cylinder pressure data, and only limited experimental tests are needed for model parameter identification. Moreover, the proposed model works well during engine transient operation, with maximum average error of 6.68% during rapid transients. A detailed identification procedure is given. This and the model performance have been demonstrated using experimental piston crown surface temperature data from a prototype 1-liter 3-cylinder turbocharged GDI engine, operated in both engine steady-state and transient conditions with an oil jet used for piston cooling turned both on and off.

References

1.
Yan
,
F.
, and
Wang
,
J.
,
2012
, “
Engine Cycle-by-Cycle Cylinder Wall Temperature Observer-Based Estimation Through Cylinder Pressure Signals
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
6
), p.
061014
.10.1115/1.4006222
2.
Wilhelmsson
,
C.
,
Vressner
,
A.
,
Tunestål
,
P.
,
Johansson
,
B.
,
Särner
,
G.
, and
Aldén
,
M.
,
2005
, “
Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation
,”
SAE
Paper No. 2005-01-3731.10.4271/2005-01-3731
3.
Raza
,
M.
,
Chen
,
L.
,
Leach
,
F. C. P.
, and
Ding
,
S.
,
2018
, “
A Review of Particulate Number (PN) Emissions From Gasoline Direct Injection (GDI) Engines and Their Control Techniques
,”
Energies
,
11
(
6
), p.
1417
.10.3390/en11061417
4.
United Nations for Economic Commission for Europe
,
2019
, “
Proposal for Amendment 5 to Global Technical Regulation No. 15 (Worldwide Harmonized Light Vehicles Test Procedures (WLTP))
,” ECE/TRANS/180/Add.15/Ammend.5
.
5.
Biagiotti
,
F.
,
Bonatesta
,
F.
,
Tajdaran
,
S.
,
Sciortino
,
D. D.
,
Verma
,
S.
,
Hopkins
,
E.
,
Morrey
,
D.
, et al.,
2022
, “
Modelling Liquid Film in Modern GDI Engines and the Impact on Particulate Matter Emissions - Part 1
,”
Int. J. Engine Res.
,
23
(
10
), pp.
1634
1657
.10.1177/14680874211024476
6.
Jiao
,
Q.
, and
Reitz
,
R. D.
,
2015
, “
The Effect of Operating Parameters on Soot Emissions in GDI Engines
,”
SAE Int. J. Engines
,
8
(
3
), pp.
1322
1333
.10.4271/2015-01-1071
7.
Yusuf
,
A. A.
, and
Inambao
,
F. L.
,
2019
, “
Effect of Cold Start Emissions From Gasoline-Fueled Engines of Light-Duty Vehicles at Low and High Ambient Temperatures: Recent Trends
,”
Case Stud. Therm. Eng.
,
14
, p.
100417
.10.1016/j.csite.2019.100417
8.
Pielaczyc
,
P.
, and
Szczotka
,
A.
,
2011
, “
The Effect of Low Ambient Temperature on the Cold-Start Emissions and Fuel Consumption of Passenger Cars
,”
SAE Int. J. Commer. Veh.
,
9
(
2
), pp.
291
297
.10.1177/0954407011406613
9.
Najafabadi
,
M. I.
,
Mirsalim
,
M.
,
Hosseini
,
V.
, and
Alaviyoun
,
S.
,
2014
, “
Experimental and Numerical Study of Piston Thermal Management Using Piston Cooling Jet
,”
J. Mech. Sci. Technol.
,
28
(
3
), pp.
1079
1087
.10.1007/s12206-013-1183-7
10.
Dhar
,
S.
,
Godavarthi
,
R.
,
Ranganathan
,
R.
,
Mishra
,
A.
, and
Bedekar
,
S.
,
2019
, “
A Transient, 3-Dimensional Multiphase CFD/Heat Transfer and Experimental Study of Oil Jet Cooled Engine Pistons
,”
SAE
Paper No. 2019-01-0154.10.4271/2019-01-0154
11.
Luff
,
D. C.
,
Law
,
T.
,
Shayler
,
P. J.
, and
Pegg
,
I.
,
2012
, “
The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1300
1311
.10.4271/2012-01-1212
12.
Kopple
,
F.
,
Seboldt
,
D.
,
Jochmann
,
P.
,
Hettinger
,
A.
,
Kufferath
,
A.
, and
Bargende
,
M.
,
2014
, “
Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine Via Instantaneous Surface Temperature Measurements
,”
SAE Int. J. Engines
,
7
(
3
), pp.
1178
1194
.10.4271/2014-01-1447
13.
Kelleher
,
J.
, and
Ajotikar
,
N.
,
2016
, “
Piston Cooling Nozzle Oil Jet Evaluation Using CFD and a High Speed Camera
,”
SAE Int. J. Commer. Veh.
,
9
(
2
), pp.
291
297
.10.4271/2016-01-8100
14.
Chen
,
Y.
,
Dhar
,
S.
, and
Schlautman
,
J.
,
2020
, “
Experimental and Numerical Investigation of the Multiphase Flow and Heat Transfer in an Oil Jet Cooled Engine Piston
,”
SAE
Paper No. 2020-01-0165.10.4271/2020-01-0165
15.
Izadi
,
M.
,
Hosseini
,
S. V.
,
Alaviyoun
,
S. S.
, and
Mirsalim
,
S. M. A.
,
2010
, “
Experimental and Numerical Analysis of the Piston Cooling Jet's Performance
,”
ASME
Paper No. ESDA2010-25145. 10.1115/ESDA2010-25145
16.
Kopple
,
F.
,
Jochmann
,
P.
,
Kufferath
,
A.
, and
Bargende
,
M.
,
2013
, “
Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation
,”
SAE Int. J. Engines
,
6
(
2
), pp.
911
925
.10.4271/2013-01-1089
17.
Zheng
,
M.
, and
Kumar
,
R.
,
2009
, “
Implementation of Multiple-Pulse Injection Strategies to Enhance the Homogeneity for Simultaneous Low-NOx and -Soot Diesel Combustion
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1829
1841
.10.1016/j.ijthermalsci.2009.02.009
18.
Yoshihiro
,
I.
, and
Kiyotaka
,
S.
,
2015
, “
A Study of Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engine
,”
SAE Int. J. Commer. Veh.
,
9
(
2
), pp.
291
297
.10.4271/2015-01-0883
19.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Trans., 76(4), pp.
3065
3083
.10.4271/670931
20.
Chang
,
K.
,
Lavoie
,
G. A.
,
Babajimopoulos
,
A.
,
Filipi
,
Z.
, and
Assanis
,
D. N.
,
2007
, “
Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects
,”
SAE
Paper No. 2007-01-0204
.10.4271/2007-01-0204
21.
Yan
,
Z.
,
Gainey
,
B.
, and
Lawler
,
B.
,
2022
, “
A Parametric Modeling Study of Thermal Barrier Coatings in Low-Temperature Combustion Engines
,”
Appl. Therm. Eng.
,
200
, p.
117687
.10.1016/j.applthermaleng.2021.117687
22.
Yan
,
Z.
,
Levi
,
A.
,
Zhang
,
Y.
,
Sellnau
,
M.
,
Filipi
,
Z.
, and
Lawler
,
B.
,
2023
, “
A Numerical Evaluation and Guideline for Thermal Barrier Coatings on Gasoline Compression Ignition Engines
,”
Int. J. Engine Res.
,
24
(
5
), pp.
2206
2222
.10.1177/14680874221114534
23.
Gandolfo
,
J.
,
Gainey
,
B.
,
Yan
,
Z.
,
Jiang
,
C.
,
Kumar
,
R.
,
Jordan
,
E. H.
,
Filipi
,
Z.
, and
Lawler
,
B.
,
2023
, “
Low Thermal Inertia Thermal Barrier Coatings for Spark Ignition Engines: An Experimental Study
,”
Int. J. Engine Res.
,
24
(
7
), pp.
3297
3313
.10.1177/14680874221149458
24.
Payri
,
F.
,
Olmeda
,
P.
,
Martin
,
J.
, and
Carreño
,
R.
,
2014
, “
A New Tool to Perform Global Energy Balances in DI Diesel Engines
,”
SAE Int. J. Engines
,
7
(
1
), pp.
43
59
.10.4271/2014-01-0665
25.
Benajes
,
J.
,
Olmeda
,
P.
,
Martín
,
J.
,
Blanco-Caver
,
D.
, and
Warey
,
A.
,
2017
, “
Evaluation of Swirl Effect on the Global Energy Balance of a HSDI Diesel Engine
,”
Energy
,
122
, pp.
168
181
.10.1016/j.energy.2017.01.082
26.
Taylor
,
C. F.
,
1985
,
The Internal-Combustion Engine in Theory and Practice: Combustion, Fuels, Materials, Design
,
MIT Press,
Cambridge, MA.
27.
Fonseca
,
L.
,
Olmeda
,
P.
,
Novella
,
R.
, and
Valle
,
R. M.
,
2020
, “
Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview
,”
Arch. Comput. Methods Eng.
,
27
(
5
), pp.
1661
1679
.10.1007/s11831-019-09361-9
28.
Ferguson
,
C.
, and
Kirkpatrick
,
A.
,
2015
,
Internal Combustion Engines: Applied Thermosciences
,
Wiley
, Hoboken, NJ.
29.
OMEGA
,
2024
, “
Thermocouple Response Time Information for Ultra-Fine Thermocouples
,” accessed Jan. 29, 2024, https://www.omega.com/en-us/resources/thermocouples-response-time
30.
Blundell
,
R.
, and
Duncan
,
A.
,
1998
, “
Kernel Regression in Empirical Microeconomics
,”
J. Human Resour.
,
33
(
1
), pp.
62
87
.10.2307/146315
31.
Brown
,
R.
, and
Hwang
,
P.
,
1997
,
Introduction to Random Signals and Applied Kalman Filtering
, 3rd ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.