Abstract

Airborne compression ignition engines must operate with reliable ignition systems to achieve proper ignition at every cycle, particularly at high altitudes. Glow-plug-based ignition-assistant (IA) devices can provide the necessary energy to preheat the fuel and ensure ignitability of the fuel-air mixture. Ignitability of liquid sprays can be facilitated via direct impingement onto the hot IA surface, however this comes with adverse effects on the IA durability. Therefore, optimizing an IA's design requires detailed understanding of the physics of fuel spray impingement of superheated surfaces. While spray impingement on relatively low wall temperatures has been extensively studied and appropriate numerical models have been proposed through the years, fundamental understanding of high-speed liquid spray impingement on superheated walls is still elusive. This work aims to formulate a phenomenological thermal spray-wall interaction framework for modeling the film-boiling-induced heat transfer, atomization, and dispersion of fuel spray droplets impinging onto a superheated IA device. A qualitative comparison of the new phenomenological model is performed against optical experiments from the literature of an F-24 fuel spray injected onto an IA device located 12 mm away from the injector tip. The temperature of the IA was set at 1400 K. The fuel injection pressure was 400 bar, while the ambient gas pressure and temperature were 30 bar and 800 K, respectively. The performance of the phenomenological model is evaluated in comparison with two other state-of-art models from the literature. A qualitative analysis of the different spray and fuel-air mixture characteristics is performed to outline the differences in the predictions offered by the new phenomenological model and the two state-of-art spray-wall interaction models.

References

1.
Kim
,
K.
,
Szedlmayer
,
M. T.
,
Kweon
,
C. B.
,
Kruger
,
K.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
, et al.,
2017
, “
The Effect of Outside Air Temperature and Cetane Number on Combustion and Performance in a UAV Diesel Engine at Various Altitude Conditions
,” AIAA Paper No. 2017-5027.10.2514/6.2017-5027
2.
Szedlmayer
,
M. T.
,
Kim
,
K.
,
Kweon
,
C. B.
, and
Kruger
,
K.
,
2017
, “
The Effect of Fuel Aromatic Content and Cetane Number on Combustion in a UAV Diesel Engine
,” AIAA Paper No. 2017-5029.10.2514/6.2017-5029
3.
Szedlmayer
,
M. T.
,
Kweon
,
C. B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Armstrong
,
R.
,
Lindsey
,
C. A.
, et al.,
2016
, “
Combustion and Performance Sensitivity to Fuel Cetane Number in an Aviation Diesel Engine
,” AIAA Paper No. 2016-5111.10.2514/6.2016-5111
4.
Mueller
,
C. J.
, and
Musculus
,
M. P.
,
2001
, “
Glow Plug Assisted Ignition and Combustion of Methanol in an Optical DI Diesel Engine (No. 2001-01-2004)
,” SAE Paper No. 2001-01-2004.10.4271/2001-01-2004
5.
Havenith
,
C.
,
Kuepper
,
H.
, and
Hilger
,
U.
,
1987
, “
Performance and Emission Characteristics of the Deutz Glow Plug Assisted Heavy-Duty Methanol Engine
,” SAE Paper No. 872245.10.4271/872245
6.
Willi
,
M. L.
, and
Richards
,
B. G.
,
1995
, “
Design and Development of a Direct Injected, Glow Plug Ignition-Assisted, Natural Gas Engine
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
799
803
.10.1115/1.2815467
7.
Adomeit
,
P.
,
Jakob
,
M.
,
Kolbeck
,
A.
, and
Pischinger
,
S.
,
2011
, “
Glow-Plug Ignition of Ethanol Fuels Under Diesel Engine Relevant Thermodynamic Conditions (No. 2011-01-1391)
,” SAE Paper No. 2011-01-1391.10.4271/2011-01-1391
8.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Kim
,
K.
,
Kweon
,
C. B. M.
, and
Lee
,
T.
,
2021
, “
High-Pressure Fuel Spray Ignition Behavior With Hot Surface Interaction
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5665
5672
.10.1016/j.proci.2020.08.041
9.
Motily
,
A.
,
Ryu
,
J. I.
,
Kim
,
Y.
,
Kim
,
K.
,
Lee
,
T.
, and
Kweon
,
C. B.
,
2020
, “
Effects of Cetane Number on High-Pressure Fuel Spray Characteristics With a Hot Surface Ignition Source
,” AIAA Paper No. 2020-2280.10.2514/6.2020-2280
10.
Motily
,
A.
,
Wood
,
E. J.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Lee
,
T.
, and
Kweon
,
C. B.
,
2021
, “
Optimizing Hot-Surface-Assisted Ignition Performance of High-Pressure F-24 Fuel Sprays
,” AIAA Paper No. 2021-0414.10.2514/6.2021-0414
11.
Amezcua Cuellar
,
E. R.
,
Rothamer
,
D.
,
Kim
,
K.
, and
Kweon
,
C. B.
,
2020
, “
Optical Engine Study of Variable Energy Assisted Compression Ignition Using a Glow Plug for Unmanned Aircraft Propulsion Systems
,” AIAA Paper No. 2020-2281.10.2514/6.2020-2281
12.
Amezcua
,
E. R.
,
Kim
,
K.
,
Rothamer
,
D.
, and
Kweon
,
C. B.
,
2022
, “
Ignition Sensitivity Analysis for Energy-Assisted Compression-Ignition Operation on Jet Fuels With Varying Cetane Number
,”
SAE Int. J. Adv. Curr. Practices Mobility
,
4
(
5
), pp.
1651
1666
.10.4271/2022-01-0443
13.
Ryu
,
J. I.
,
Motily
,
A.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K.
, and
Kweon
,
C. B.
,
2021
, “
Effect of Hot Probe Temperature on Ignition of Alcohol-to-Jet (ATJ) Fuel Spray Under Aircraft Propulsion System Conditions
,” AIAA Paper No. 2021-0985.10.2514/6.2021-0985
14.
Ryu
,
J. I.
,
Motily
,
A.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K.
, and
Kweon
,
C. B.
,
2020
, “
Ignition Enhancement of F-24 Jet Fuel by a Hot Surface for Aircraft Propulsion Systems
,” AIAA Paper No. 2020-2142.10.2514/6.2020-2142
15.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1997
, “
Film Boiling Heat Transfer of Droplet Streams and Sprays
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2579
2593
.10.1016/S0017-9310(96)00297-9
16.
Quéré
,
D.
,
2013
, “
Leidenfrost Dynamics
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
197
215
.10.1146/annurev-fluid-011212-140709
17.
Schmidt
,
J. B.
,
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2022
, “
Interaction of Drops and Sprays With a Heated Wall
,”
Droplet Dynamics Under Extreme Ambient Conditions
,
Springer International Publishing
,
Cham, Switzerland
, pp.
333
353
.https://link.springer.com/chapter/10.1007/978-3-031-09008-0_17#:~:text=The%20outcome%20of%20drop%20impact,impact%20parameters%20and%20surface%20temperature.
18.
Kang
,
S. G.
,
Ryu
,
J. I.
,
Motily
,
A.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W.
, et al,
2021
, “
Thermo-Mechanical Response of a Hot Surface Ignition Device Under Aircraft Compression Ignition Engine Conditions
,” AIAA Paper No. 2021-3615.10.2514/6.2021-3615
19.
Kang
,
S. G.
,
Ryu
,
J. I.
,
Motily
,
A.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W.
, and
Kweon
,
C. B. M.
2022
, “
Transient Thermo-Mechanical Stress Analysis of Hot Surface Probe Using Sequentially Coupled CFD-FEA Approach
,”
ASME J. Eng. Gas Turbines Power
, 145(2), p.
121001
.10.1115/1.4056426
20.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2022
, “
Thermomechanical Characterization of Hot Surface Ignition Device Using Phenomenological Heat Flux Model
,”
J. Propul. Power
,
38
(
4
), pp.
656
670
.10.2514/1.B38662
21.
Moreira
,
A. L. N.
,
Moita
,
A. S.
, and
Panao
,
M. R.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.10.1016/j.pecs.2010.01.002
22.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2017
, “
Drop Collision With a Hot, Dry Solid Substrate: Heat Transfer During Nucleate Boiling
,”
Phys. Rev. Fluids
,
2
(
7
), p.
074301
.10.1103/PhysRevFluids.2.074301
23.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2017
, “
Heat Transfer in the Film Boiling Regime: Single Drop Impact and Spray Cooling
,”
Int. J. Heat Mass Transfer
,
110
, pp.
34
42
.10.1016/j.ijheatmasstransfer.2017.03.004
24.
Roisman
,
I. V.
,
Breitenbach
,
J.
, and
Tropea
,
C.
,
2018
, “
Thermal Atomization of a Liquid Drop After Impact Onto a Hot Substrate
,”
J. Fluid Mech.
,
842
, pp.
87
101
.10.1017/jfm.2018.123
25.
Breitenbach
,
J.
,
Kissing
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2018
, “
Characterization of Secondary Droplets During Thermal Atomization Regime
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
516
522
.10.1016/j.expthermflusci.2018.06.030
26.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2018
, “
From Drop Impact Physics to Spray Cooling Models: A Critical Review
,”
Exp. Fluids
,
59
(
3
), pp.
1
21
.10.1007/s00348-018-2514-3
27.
Moita
,
A. S.
, and
Moreira
,
A. L.
,
2009
, “
Development of Empirical Correlations to Predict the Secondary Droplet Size of Impacting Droplets Onto Heated Surfaces
,”
Exp. Fluids
,
47
(
4–5
), pp.
755
768
.10.1007/s00348-009-0719-1
28.
Dukowicz
,
J. K.
,
1980
, “
A Particle-Fluid Numerical Model for Liquid Sprays
,”
J. Computat. Phys.
,
35
(
2
), pp.
229
253
.10.1016/0021-9991(80)90087-X
29.
Bai
,
C.
, and
Gosman
,
A. D.
,
1995
, “
Development of Methodology for Spray Impingement Simulation
,” SAE Paper No. 950283.10.4271/950283
30.
Kuhnke
,
D.
,
2004
,
Spray/Wall Interaction Modelling by Dimensionless Data Analysis
,
Shaker Verlag GmbH
,
Düren, Germany
.
31.
Senda
,
J.
,
Kobayashi
,
M.
,
Iwashita
,
S.
, and
Fujimoto
,
H.
,
1994
, “
Modeling of Diesel Spray Impingement on a Flat Wall
,” SAE Paper No. 941894.10.4271/941894
32.
Lee
,
L.
,
Kihyung
,
J.
,
Senda
,
H.
, and
Fujimoto
,
C.
,
2001
, “
A Study on the Spray–Wall Interaction Model Considering Degree of Superheat in the Wall Surface
,”
Numer. Heat Transfer, Part B: Fundam.
,
40
(
6
), pp.
495
513
.10.1080/104077901753306610
33.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2022
,
CONVERGE 3.1 Manual
,
Convergent Science
,
Madison, WI
.
34.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,” SAE Paper No. 2000-01-0271.10.4271/2000-01-0271
35.
Wruck
,
N. M.
, and
Renz
,
U.
,
2000
, “
Transient Phase‐Change of Droplets Impacting on a Hot Wall
,”
Transient Phenomena in Multiphase and Multicomponent Systems: Research Report
, pp.
210
226
.https://www.wsa.rwth-aachen.de/cms/WSA/Forschung/Publikationen/~gkev/Details/?file=86028&lidx=1
36.
Edwards
,
J. T.
,
2017
, “
Reference Jet Fuels for Combustion Testing
,” AIAA Paper No. 2017-0146.10.2514/6.2017-0146
37.
Naber
,
J. D.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,” SAE Paper No. 880107.10.4271/880107
38.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
39.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays (No. LA-11560-MS)
,”
Los Alamos National Laboratory
(
LANL
),
Los Alamos, NM
.10.2172/6228444
You do not currently have access to this content.