Abstract

Direct-fired supercritical CO2 (sCO2) power cycles are a pathway to low-CO2 fossil energy but contain O2 and H2O in the sCO2 from combustion. The effect of impurities on structural steels was investigated at 450°–650 °C in 30 MPa sCO2. The test matrix included 9 and 12%Cr ferritic-martensitic (FM) steels and conventional and advanced austenitic steels exposed for 1000–2000 h with and without additions of 1%O2 and 0.1%H2O to simulate the cycle after water removal. For FM steels, the mass gains and scale thicknesses were similar with and without impurities with the formation of thick, duplex Fe-rich scales in all cases including the observation that Fe2O3 only formed with 1%O2. For the austenitic steels, higher mass gains were observed at all temperatures with increased formation of Fe-rich oxides when impurities were added. Carbon ingress was assessed by bulk combustion analysis, glow discharge optical emission spectroscopy (GDOES) and measuring postexposure room temperature tensile properties. Bulk C content was strongly increased at 650 °C but not at 450° or 550 °C.

References

1.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.10.1016/0013-7480(68)90105-8
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors
,”
Nucl. Technol.
,
154
(
3
), pp.
265
282
.10.13182/NT154-265
3.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.10.1016/j.rser.2010.07.006
4.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.10.1016/j.apenergy.2013.06.020
5.
Allam
,
R. J.
,
Palmer
,
M. R.
,
Brown
,
G. W.
,
Fetvedt
,
J.
,
Freed
,
D.
,
Nomoto
,
H.
,
Itoh
,
M.
,
Okita
,
N.
, and
Jones
,
C.
,
2013
, “
High Efficiency and Low Cost of Electricity Generation From Fossil Fuels While Eliminating Atmospheric Emissions, Including Carbon Dioxide
,”
Energy Proc.
,
37
, pp.
1135
1149
.10.1016/j.egypro.2013.05.211
6.
Oh
,
C. H.
,
Lillo
,
T.
,
Windes
,
W.
,
Totemeier
,
T.
,
Ward
,
B.
,
Moore
,
R.
, and
Barner
,
R.
,
2006
, “
Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility
,” Idaho National Laboratory, Report No. INL/EXT-06-01271.
7.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
, Jr.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Proc.
,
114
, pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
8.
Olivares
,
R. I.
,
Young
,
D. J.
,
Marvig
,
P.
, and
Stein
,
W.
,
2015
, “
Alloys SS316 and Hastelloy-C276 in Supercritical CO2 at High Temperature
,”
Oxid. Met.
,
84
(
5–6
), pp.
585
606
.10.1007/s11085-015-9589-5
9.
Dheeradhada
,
V.
,
Thatte
,
A.
,
Karadge
,
M.
, and
Drobnjak
,
M.
,
2015
, “
Corrosion of Supercritical CO2 Turbomachinery Components
,”
Proceedings of the EPRI International Conference on Corrosion in Power Plants
,
San Diego, CA
,
Oct. 2015
.
10.
Pint
,
B. A.
, and
Keiser
,
J. R.
,
2015
, “
Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2
,”
JOM
,
67
(
11
), pp.
2615
2620
.10.1007/s11837-015-1661-8
11.
Mahaffey
,
J.
,
Adam
,
D.
,
Brittan
,
A.
,
Anderson
,
M.
, and
Sridharan
,
K.
,
2016
, “
Corrosion of Alloy Haynes 230 in High Temperature Supercritical Carbon Dioxide With Oxygen Impurity Additions
,”
Oxid. Met.
,
86
(
5–6
), pp.
567
580
.10.1007/s11085-016-9654-8
12.
Pint
,
B. A.
,
Brese
,
R. G.
, and
Keiser
,
J. R.
,
2017
, “
Effect of Pressure on Supercritical CO2 Compatibility of Structural Alloys at 750 °C
,”
Mater. Corros.
,
68
(
2
), pp.
151
158
.10.1002/maco.201508783
13.
Oleksak
,
R. P.
,
Tylczak
,
J. H.
,
Carney
,
C. S.
,
Holcomb
,
G. R.
, and
Doğan
,
Ö. N.
,
2018
, “
High-Temperature Oxidation of Commercial Alloys in Supercritical CO2 and Related Power Cycle Environments
,”
JOM
,
70
(
8
), pp.
1527
1534
.10.1007/s11837-018-2952-7
14.
Olivares
,
R. I.
,
Young
,
D. J.
,
Nguyen
,
T. D.
, and
Marvig
,
P.
,
2018
, “
Resistance of High-Nickel, Heat-Resisting Alloys to Air and to Supercritical CO2 at High Temperatures
,”
Oxid. Met.
,
90
(
1–2
), pp.
1
25
.10.1007/s11085-017-9820-7
15.
Pint
,
B. A.
,
Lehmusto
,
J.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2019
, “
The Effect of Pressure and Impurities on Oxidation in Supercritical CO2
,”
Mater. Corros.
,
70
(
8
), pp.
1400
1409
.10.1002/maco.201810652
16.
Pint
,
B. A.
,
Pillai
,
R.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2020
, “
Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2
,”
Oxid. Met.
,
94
(
5–6
), pp.
505
526
.10.1007/s11085-020-10004-9
17.
Oleksak
,
R. P.
,
Carney
,
C. S.
, and
Doğan
,
Ö. N.
,
2023
, “
Effect of Pressure on High-Temperature Oxidation of Ni Alloys in Supercritical CO2 Containing Impurities
,”
Corros. Sci.
,
215
, p.
111055
.10.1016/j.corsci.2023.111055
18.
Gong
,
Y.
,
Young
,
D. J.
,
Kontis
,
P.
,
Chiu
,
Y. L.
,
Larsson
,
H.
,
Shin
,
A.
,
Pearson
,
J. M.
,
Moody
,
M. P.
, and
Reed
,
R. C.
,
2017
, “
On the Breakaway Oxidation of Fe9Cr1Mo Steel in High Pressure CO2
,”
Acta Mater.
,
130
, pp.
361
374
.10.1016/j.actamat.2017.02.034
19.
Sarrade
,
S.
,
Féron
,
D.
,
Rouillard
,
F.
,
Perrin
,
S.
,
Robin
,
R.
,
Ruiz
,
J.-C.
, and
Turc
,
H.-A.
,
2017
, “
Overview on Corrosion in Supercritical Fluids
,”
J. Supercrit. Fluids
,
120
, pp.
335
344
.10.1016/j.supflu.2016.07.022
20.
Shingledecker
,
J. P.
,
Pint
,
B. A.
,
Sabau
,
A. S.
,
Fry
,
A. T.
, and
Wright
,
I. G.
,
2013
, “
Managing Steam-Side Oxidation and Exfoliation in USC Boiler Tubes
,”
Adv. Mater. Process.
,
171
(
1
), pp.
23
25
.10.31399/asm.amp.2013-01.p023
21.
Furukawa
,
T.
,
Inagaki
,
Y.
, and
Aritomi
,
M.
,
2011
, “
Compatibility of FBR Structural Materials With Supercritical Carbon Dioxide
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
1050
1055
.10.1016/j.pnucene.2011.04.030
22.
Gheno
,
T.
,
Monceau
,
D.
,
Zhang
,
J.
, and
Young
,
D. J.
,
2011
, “
Carburisation of Ferritic Fe-Cr Alloys by Low Carbon Activity Gases
,”
Corros. Sci.
,
53
(
9
), pp.
2767
2777
.10.1016/j.corsci.2011.05.013
23.
Meier
,
G. H.
,
Coons
,
W. C.
, and
Perkins
,
R. A.
,
1982
, “
Corrosion of Iron-, Nickel- and Cobalt-Base Alloys in Atmospheres Containing Carbon and Oxygen
,”
Oxid. Met.
,
17
(
3–4
), pp.
235
262
.10.1007/BF00738385
24.
Lehmusto
,
J.
,
Ievlev
,
A. V.
,
Cakmak
,
E.
,
Keiser
,
J. R.
, and
Pint
,
B. A.
,
2021
, “
A Tracer Study on sCO2 Corrosion With Multiple Oxygen-Bearing Impurities
,”
Oxid. Met.
,
96
(
5–6
), pp.
571
587
.10.1007/s11085-021-10071-6
25.
Pint
,
B. A.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2021
, “
Effect of Supercritical CO2 on Steel Ductility at 450°–650 °C
,” Turbo Expo 2021 Virtual Conference and Exhibition,
ASME
Paper No. GT2021-59383. 10.1115/GT2021-59383
26.
Pint
,
B. A.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2021
, “
Compatibility of Steels in Supercritical CO2 at 450°–650 °C
,”
Paper presented virtually at Corrosion 2021
,
Houston, TX
, Apr.
19
30
.https://www.ornl.gov/publication/compatibility-steels-supercritical-co2-450deg-650degc
27.
Pint
,
B. A.
,
Lance
,
M. J.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2022
, “
Compatibility of Steels at 450°-650 °C in Supercritical CO2 With O2 and H2O Additions
,”
Paper presented at the AMPP Annual Conference
,
Houston, TX
, Mar.
6
10
.https://www.ornl.gov/publication/compatibility-steels-450deg-650degc-supercritical-co2-o2-and-h2o-additions
28.
McCoy
,
H. E.
,
1965
, “
Type 304 Stainless Steel vs. Flowing CO2 at Atmospheric Pressure and 1100–1800 °F
,”
Corrosion
,
21
(
3
), pp.
84
94
.10.5006/0010-9312-21.3.84
29.
Martin
,
W. R.
, and
Weir
,
J. R.
,
1965
, “
Influence of Chromium Content on Carburization of Chromium-Nickel-Iron Alloys in Carbon Dioxide
,”
J. Nucl. Mater.
,
16
(
1
), pp.
19
24
.10.1016/0022-3115(65)90087-5
30.
Lance
,
M. J.
,
Leonard
,
D. N.
, and
Pint
,
B. A.
,
2018
, “
The Use of Glow Discharge Optical Emission Spectroscopy to Quantify Internal Carburization in Supercritical CO2
,”
Proceedings of the 6th International Symposium on Supercritical CO2 Power Cycles
,
Pittsburgh, PA
, Mar.
27
29
.https://sco2symposium.com/papers2018/materials/117_Paper.pdf
31.
Pint
,
B. A.
,
Pearson
,
S. R.
,
De Las Casas Aranda
,
R.
,
Lance
,
M. J.
,
Raiman
,
S. S.
, and
Kung
,
S. C.
,
2019
, “
Water Chemistry and Pressure Effects on Steam Oxidation of Ferritic and Austenitic Steels
,”
Proceedings of the Joint EPRI – 123HiMAT International Conference on Advances in High Temperature Materials
,
ASM International
,
Materials Park, OH
, Oct. 21–24, pp.
939
947
.https://www.osti.gov/servlets/purl/1607089
32.
Pieraggi
,
B.
,
1987
, “
Calculations of Parabolic Reaction Rate Constants
,”
Oxid. Met.
,
27
(
3–4
), pp.
177
185
.10.1007/BF00667057
33.
Rouillard
,
F.
,
Charton
,
F.
, and
Moine
,
G.
,
2011
, “
Corrosion Behavior of Different Metallic Materials in Supercritical Carbon Dioxide at 550 °C and 250 Bars
,”
Corrosion
,
67
(
9
), pp.
095001
095001-7
.10.5006/1.3628683
34.
Tan
,
L.
,
Anderson
,
M.
,
Taylor
,
D.
, and
Allen
,
T. R.
,
2011
, “
Corrosion of Austenitic and Ferritic-Martensitic Steels Exposed to Supercritical Carbon Dioxide
,”
Corros. Sci.
,
53
(
10
), pp.
3273
3280
.10.1016/j.corsci.2011.06.002
35.
Kurley
,
J. M.
, and
Pint
,
B. A.
,
2020
, “
The Effect of Shot Peening on Steam Oxidation of 304H Stainless Steel
,”
Oxid. Met.
,
93
(
1–2
), pp.
159
174
.10.1007/s11085-019-09951-9
36.
Tőkei
,
Z.
,
Hennesen
,
K.
,
Viefhaus
,
H.
, and
Grabke
,
H. J.
,
2000
, “
Diffusion of Chromium in Ferritic and Austenitic 9–20 Wt.% Chromium Steels
,”
Mater. Sci. Technol.
,
16
(
10
), pp.
1129
1138
.10.1179/026708300101507055
37.
Peraldi
,
R.
, and
Pint
,
B. A.
,
2004
, “
Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air With Water Vapor
,”
Oxid. Met.
,
61
(
5/6
), pp.
463
483
.10.1023/B:OXID.0000032334.75463.da
38.
Pint
,
B. A.
,
2021
, “
High Temperature Compatibility of Structural Alloys With Supercritical and Subcritical CO2
,”
Interface
,
30
(
2
), pp.
67
71
.10.1149/2.F07212IF
39.
Pint
,
B. A.
,
Pillai
,
R.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2024
, “
Coated and Uncoated Steel Compatibility in Supercritical CO2 at 450°–650°C
,”
Proceedings of the 8th International Symposium on Supercritical CO2 Power Cycles
,
San Antonio, TX
,
Feb. 2024
.
40.
Oleksak
,
R. P.
,
Holcomb
,
G. R.
,
Carney
,
C. S.
, and
Doğan
,
Ö. N.
,
2022
, “
Carburization Susceptibility of Chromia-Forming Alloys in High-Temperature CO2
,”
Corros. Sci.
,
206
, p.
110488
.10.1016/j.corsci.2022.110488
41.
Pint
,
B. A.
,
Su
,
Y.-F.
,
Lance
,
M. J.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2023
, “
Internal Carburization and Scale Formation on Austenitic Steels in Supercritical Carbon Dioxide
,”
Mater. High Temp.
,
40
(
4
), pp.
308
317
.10.1080/09603409.2023.2219875
42.
Pint
,
B. A.
,
Su
,
Y.-F.
, and
Pillai
,
R.
,
2024
, “
Characterization of Oxide Scales Formed on Fe-20Cr-(20-25)Ni Alloys in Supercritical CO2
,”
AMPP Annual Meeting
,
Houston, TX, New Orleans, LA
,
Mar. 2024
.
43.
Pint
,
B. A.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2023
, “
Evaluation of Coatings to Improve Steel Compatibility in Supercritical CO2
,”
Paper presented at the AMPP Annual Conference
,
Houston, TX
, Mar.
19
23
.https://www.ornl.gov/publication/evaluation-coatings-improve-steel-compatibility-supercritical-co2
44.
Pint
,
B. A.
,
Su
,
Y.-F.
,
Lance
,
M. J.
,
Pillai
,
R.
, and
Keiser
,
J. R.
,
2024
, “
Evaluation of Coated Steels in Supercritical CO2
,” Materials and Corrosion, epub.
You do not currently have access to this content.