Abstract

In Part I, a companion paper of the two-part article, a subsonic turbine stage and a transonic one conditioned at the same Reynolds number, flow coefficient, loading coefficient and reaction, but two different exit Mach numbers are designed to provide a direct contrast between a high-subsonic and a transonic flow conditioning for rotor blade squealer tips. In this paper as Part II, further analyses are carried out to address the main issues of interest arising from Part I: first, to identify the driving flow physical mechanisms for the contrasting aerodynamic efficiency sensitivities of the two stages; second to seek a more suitable heat transfer objective function for the tip aerothermal design optimization, given the seemingly strong conflicts among those conventionally adopted heat transfer objective functions. Two counter-rotating tip vortical structures, the pressure side vortex (PSV) and the casing-driven cavity vortex (CCV), are shown to impact the aero-performance differently between the two stages. For the subsonic stage, the leakage flow is strongly affected by a stronger residual PSV at the squealer cavity exit. For the transonic stage however, the tip choking in limiting the over tip leakage (OTL) mass flow and favorable pressure gradient in a transonic flow over a separation bubble led to a much stronger and more persistent CCV and thus lower aero-effectiveness of squealer tip for the transonic stage. The two vortices also show major heat transfer signatures on the cavity surfaces by impingement. For the PSV, the impingement impact is mainly on the cavity floor. For the CCV, on the other hand, its impact is mainly on the inner side-wall of the suction side rim. The latter is found to be mainly responsible for the overall linear variations of the heat load with the squealer height. Again, the relative strength between PSV and CCV serves as an effective differentiator in the heat transfer performance. The stronger and more persistent CCV in the transonic stage results in a strong signature on a large portion of the suction side cavity inner sidewall, thus a much higher increment in heat transfer with the squealer height than that for the subsonic stage. In seeking to establish a more consistent heat transfer objective function for combined aerothermal design and optimization, a coolability weighted nonuniformity parameter is proposed to integrate the local heat transfer and the coolability. The proposed objective function is shown to lead to consistent Pareto fronts for the combined aerothermal performance sensitivities, particularly for the present cases with strong heat transfer nonuniformity which are particularly challenging to those conventional treatments as shown in Part I. The coolability-augmented objective function should thus serve as an enabler to help practical applications of blade tip aerothermal design optimizations.

References

1.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
Duan
,
P.
,
Tan
,
C.
,
Scribner
,
A.
, and
Malandra
,
A.
,
2018
, “
Loss Generation in Transonic Turbine Blading
,”
ASME J. Turbomach.
,
140
(
4
), p.
041006
.10.1115/1.4038689
3.
Key
,
N.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at Highspeed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.10.1115/1.2162183
4.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.10.1115/1.2775485
5.
Duan
,
P.
, and
He
,
L.
,
2021
, “
Optimization of Turbine Cascade Squealer Tip Cooling Design by Combining Shaping and Flow Injection
,”
ASME J. Turbomach.
,
143
(
11
), p.
111007
.10.1115/1.4051204
6.
Duan
,
P.
, and
He
,
L.
,
2020
, “
Application of Multiscale Methodology for Transonic Turbine Blade Tip Cooling Design
,”
ASME J. Turbomach.
,
142
(
8
), p.
081011
.10.1115/1.4046462
7.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.10.1115/1.2950068
8.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME
Paper No. GT2009-59909.10.1115/GT2009-59909
9.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.10.1115/1.4035175
10.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.10.1115/1.4035200
11.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2013
, “
Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.10.1115/1.4025947
12.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.10.1115/1.4028740
13.
Virdi
,
A.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.10.2514/1.B35331
14.
Bindon
,
J. P.
, and
Morphis
,
G.
,
1992
, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
198
203
.10.1115/1.2927985
15.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2007
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011001
.10.1115/1.2437218
16.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M.
,
2014
, “
Aeromechanical Optimization of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME J. Turbomach.
,
136
(
7
), p.
071004
.10.1115/1.4025687
17.
Moore
,
J.
, and
Elward
,
K.
,
1993
, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
,
115
(
3
), pp.
392
399
.10.1115/1.2929266
18.
Dunn
,
M.
, and
Haldeman
,
C.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.10.1115/1.1311285
19.
Thorpe
,
S.
,
Yoshino
,
S.
,
Thomas
,
G.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
421
430
.10.1243/095765005X31171
20.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.B34112
21.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.10.1115/1.4007896
22.
Wheeler
,
A.
,
Korakianitis
,
T.
, and
Banneheke
,
S.
,
2012
, “
Tip-Leakage Losses in Subsonic and Transonic Blade Rows
,”
ASME J. Turbomach.
,
135
(
1
), p.
011029
.10.1115/1.4006424
23.
Wheeler
,
A.
,
Atkins
,
N.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
0410255
.10.1115/1.4002424
24.
Volino
,
R.
,
2014
, “
Effects of Endwall Boundary Layer Thickness and Blade Tip Geometry on Flow Through High Pressure Turbine Passages
,”
ASME
Paper No. GT2014-27013.10.1115/GT2014-27013
25.
Wei
,
Z.
,
Qiao
,
W.
,
Shi
,
P.
,
Chen
,
P.
, and
Zhao
,
L.
,
2014
, “
Tip-Leakage Flow Loss Reduction in a Two-Stage Turbine Using Axisymmetric-Casing Contouring
,”
Chin. J. Aeronaut.
,
27
(
5
), pp.
1111
1121
.10.1016/j.cja.2014.08.009
26.
He
,
L.
, and
Oldfield
,
M.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.10.1115/1.4001245
27.
Duan
,
P.
, and
He
,
L.
,
2023
, “
Design Optimization of Blade Tip in Subsonic and Transonic Turbine Stages—Part I: Stage Design and Tip Optimization
,”
ASME
Paper No. GT2022-83050.10.1115/GT2022-83050
You do not currently have access to this content.