Abstract

In this work, a priori analysis of machine learning (ML) strategies is carried out with the goal of data-driven wall modeling for large eddy simulation (LES) of gas turbine film cooling flows. High-fidelity flow datasets are extracted from wall-resolved LES (WRLES) of flow over a flat plate interacting with the coolant flow supplied by a single row of 7-7-7 shaped cooling holes inclined at 30 degrees with the flat plate at different blowing ratios (BR). The WRLES are performed using the high-order Nek5000 spectral element computational fluid dynamics (CFD) solver. Light gradient boosting machine (LightGBM) is employed as the ML algorithm for the data-driven wall model. Parametric tests are conducted to systematically assess the influence of a wide range of input flow features (velocity components, velocity gradients, pressure gradients, and fluid properties) on the accuracy of ML wall model with respect to prediction of wall shear stress. In addition, the use of spatial stencil and time delay is also explored within the ML wall modeling framework. It is shown that features associated with gradients of the streamwise and spanwise velocity components have a major impact on the prediction fidelity of wall model, while the effect of gradients of wall-normal velocity component is found to be negligible. Moreover, adding flow feature information from an x-y-z spatial stencil significantly improves the ML model accuracy and generalizability compared to just using local flow features from the matching location. Overall, highest prediction accuracy is achieved when both spatial stencil and time delay features are incorporated within the data-driven wall modeling paradigm.

References

1.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
2.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
3.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), pp.
31
36
.10.1063/1.3676783
4.
Yang
,
X. I.
, and
Griffin
,
K. P.
, “
Grid-Point and Time-Step Requirements for Direct Numerical Simulation and Large-Eddy Simulation
,”
Phys. Fluids
,
33
(
1
), p.
015108
.10.1063/5.0036515
5.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
6.
Vinuesa
,
R.
, and
Brunton
,
S. L.
,
2022
, “
Enhancing Computational Fluid Dynamics With Machine Learning
,”
Nat. Comput. Sci.
,
2
(
6
), pp.
358
366
.10.1038/s43588-022-00264-7
7.
Nunno
,
A. C.
,
Wu
,
S.
,
Ameen
,
M.
,
Pal
,
P.
,
Kundu
,
P.
,
Abouhussein
,
A.
,
Peet
,
Y.
,
Joly
,
M.
, and
Cocks
,
P.
,
2022
, “
Wall-Resolved LES Study of Shaped-Hole Film Cooling Flow for Varying Hole Orientation
,” AIAA Paper No. 2022-1404. 10.2514/6.2022-1404
8.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
9.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072605
.10.1115/1.4029206
10.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
11.
Milani
,
P. M.
,
Ling
,
J.
,
Saez-Mischlich
,
G.
,
Bodart
,
J.
, and
Eaton
,
J. K.
,
2018
, “
A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,”
ASME J. Turbomach.
,
140
(
2
), p.
021006
.10.1115/1.4038275
12.
Oliver
,
T. A.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Moser
,
R. D.
, and
Laskowski
,
G.
,
2017
, “
Implicit LES for Shaped-Hole Film Cooling Flow
,”
ASME
Paper No. GT2017-63314. 10.1115/GT2017-63314
13.
Peet
,
Y. V.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,”
ASME
Paper No. GT2008-50420. 10.1115/GT2008-50420
14.
Xu
,
H. H.
,
Yang
,
X. I.
, and
Milani
,
P. M.
,
2021
, “
Assessing Wall-Modeled Large-Eddy Simulation for Low-Speed Flows With Heat Transfer
,”
AIAA J.
,
59
(
6
), pp.
2060
2069
.10.2514/1.J059997
15.
Piomelli
,
U.
, and
Balaras
,
E.
,
2002
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
349
374
.10.1146/annurev.fluid.34.082901.144919
16.
Bose
,
S. T.
, and
Park
,
G. I.
,
2018
, “
Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
535
561
.10.1146/annurev-fluid-122316-045241
17.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.10.1017/S0022112070000691
18.
Bradshaw
,
P.
, and
Huang
,
G. P.
,
1995
, “
The Law of the Wall in Turbulent Flow
,”
Proc. R. Soc. London, Ser. A
,
451
(
1941
), pp.
165
188
.10.1098/rspa.1995.0122
19.
Pal
,
P.
,
Ameen
,
M.
, and
Xu
,
C.
,
2021
, “
Development of Wall Modeling Framework in a High-Order Spectral Element Solver Nek5000
,” AIAA Paper No. 2021-0062. 10.2514/6.2021-0062
20.
Pal
,
P.
,
Ameen
,
M.
, and
Xu
,
C.
,
2022
, “
Near-Wall Modeling of Turbulent Flow and Heat Transfer Using a Spectral Element CFD Solver
,” AIAA Paper No. 2022-1369. 10.2514/6.2022-1369
21.
Balaras
,
E.
,
Benocci
,
C.
, and
Piomelli
,
U.
,
1996
, “
Two-Layer Approximate Boundary Conditions for Large-Eddy Simulations
,”
AIAA J.
,
34
(
6
), pp.
1111
1119
.10.2514/3.13200
22.
Cadieux
,
F.
,
Sadique
,
J.
,
Yang
,
X. I.
,
Meneveau
,
C.
, and
Mittal
,
R.
,
2016
, “
Wall-Modeled Large Eddy Simulation of Laminar and Turbulent Separation Bubble Flows
,” AIAA Paper No. 2016-3189. 10.2514/6.2016-3189
23.
Yang
,
X. I.
,
Sadique
,
J.
,
Mittal
,
R.
, and
Meneveau
,
C.
,
2015
, “
Integral Wall Model for Large Eddy Simulations of Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
27
(
2
), p.
025112
.10.1063/1.4908072
24.
Catchirayer
,
M.
,
Boussuge
,
J. F.
,
Sagaut
,
P.
,
Montagnac
,
M.
,
Papadogiannis
,
D.
, and
Garnaud
,
X.
,
2018
, “
Extended Integral Wall-Model for Large-Eddy Simulations of Compressible Wall-Bounded Turbulent Flows
,”
Phys. Fluids
,
30
(
6
), p. 065106.10.1063/1.5030859
25.
Jiménez
,
J.
,
2013
, “
Near-Wall Turbulence
,”
Phys. Fluids
,
25
(
10
), p.
101302
.10.1063/1.4824988
26.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
27.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.10.1146/annurev-fluid-010518-040547
28.
Yang
,
X. I. A.
,
Zafar
,
S.
,
Wang
,
J.-X.
, and
Xiao
,
H.
,
2019
, “
Predictive Large-Eddy-Simulation Wall Modeling Via Physics-Informed Neural Networks
,”
Phys. Rev. Fluids
,
4
(
3
), p.
34602
.10.1103/PhysRevFluids.4.034602
29.
Huang
,
X. L. D.
,
Yang
,
X. I. A.
, and
Kunz
,
R. F.
,
2019
, “
Wall-Modeled Large-Eddy Simulations of Spanwise Rotating Turbulent Channels—Comparing a Physics-Based Approach and a Data-Based Approach
,”
Phys. Fluids
,
31
(
12
), p.
125105
.10.1063/1.5129178
30.
Zhou
,
Z.
,
He
,
G.
, and
Yang
,
X.
,
2021
, “
Wall Model Based on Neural Networks for LES of Turbulent Flows Over Periodic Hills
,”
Phys. Rev. Fluids
,
6
(
5
), p.
54610
.10.1103/PhysRevFluids.6.054610
31.
Lozano-Durán
,
A.
, and
Bae
,
H. J.
,
2020
, “
Self-Critical Machine-Learning Wall-Modeled LES for External Aerodynamics
,”
Ann. Res. Briefs
, pp.
197
210
.https://web.stanford.edu/group/ctr/ResBriefs/2020/20_LozanoDuran.pdf
32.
Boxho
,
M.
,
Hillewaert
,
K.
,
Winckelmans
,
G.
,
Rasquin
,
M.
,
Toulorge
,
T.
, and
Mouriaux
,
S.
,
2021
, “
A Data-Driven Wall Model for the Prediction of Turbulent Flow Separation Over Periodic Hills
,”
35th Annual Conference on Neural Information Processing Systems
, Virtual, Dec.
6
14
.https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_62.pdf
33.
Moriya
,
N.
,
Fukami
,
K.
,
Nabae
,
Y.
,
Morimoto
,
M.
,
Nakamura
,
T.
, and
Fukagata
,
K.
,
2021
, “
Inserting Machine-Learned Virtual Wall Velocity for Large-Eddy Simulation of Turbulent Channel Flows
,” arXiv:2106.09271.https://www.researchgate.net/publication/352506341_Inserting_machinelearned_virtual_wall_velocity_for_large-eddy_simulation_of_turbulent_channel_flows
34.
Zangeneh
,
R.
,
2021
, “
Data-Driven Model for Improving Wall-Modeled Large-Eddy Simulation of Supersonic Turbulent Flows With Separation
,”
Phys. Fluids
,
33
(
12
), p.
126103
.10.1063/5.0072550
35.
Radhakrishnan
,
S.
,
Gyamfi
,
L. A.
,
Miró
,
A.
,
Font
,
B.
,
Calafell
,
J.
, and
Lehmkuhl
,
O.
,
2021
, “
A Data-Driven Wall-Shear Stress Model for LES Using Gradient Boosted Decision Trees
,”
International Conference on High Performance Computing
, Virtual, pp.
105
121
.10.1007/978-3-030-90539-2_7
36.
Bae
,
H. J.
, and
Koumoutsakos
,
P.
,
2022
, “
Scientific Multi-Agent Reinforcement Learning for Wall-Models of Turbulent Flows
,”
Nat. Commun.
,
13
(
1
), pp.
1
9
.10.1038/s41467-022-28957-7
37.
Fischer
,
P.
,
Lottes
,
J.
, and
Tufo
,
H.
, 2007,
Nek5000 [Computer Software]
,
Argonne National Laboratory (ANL), Argonne, IL
.10.11578/dc.20210416.29
38.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.10.1115/GT2014-25992
39.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T.-Y.
,
2017
, “
LightGBM: A Highly Efficient Gradient Boosting Decision Tree
,”
Adv. Neural Inf. Process. Syst.
,
30
.https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
40.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
41.
Akiba
,
T.
,
Sano
,
S.
,
Yanase
,
T.
,
Ohta
,
T.
, and
Koyama
,
M.
,
2019
, “
Optuna: A Next-Generation Hyperparameter Optimization Framework
,”
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
, Anchorage, AK, Aug. 4–8, pp.
2623
2631
.10.1145/3292500.3330701
42.
Bergstra
,
J.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “
Algorithms for Hyper-Parameter Optimization
,”
Adv. Neural Inf. Process. Syst.
,
24
.https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
43.
Boxho
,
M.
,
Rasquin
,
M.
,
Toulorge
,
T.
,
Dergham
,
G.
,
Winckelmans
,
G.
, and
Hillewaert
,
K.
,
2022
, “
Analysis of Space-Time Correlations to Support the Development of Wall-Modeled LES
,”
Flow, Turbul. Combust.
,
109
(
4
), pp.
1081
1109
.10.1007/s10494-022-00365-3
You do not currently have access to this content.