Abstract

Aerodynamic instability plays an important role in compressor design and may cause performance degradation and fatigue damage. In this paper, an experimental study on the evolution of aerodynamic instability is carried out on a compressor that combines the performance benefits of an axial stage and centrifugal stage. The spatiotemporal characteristics of unsteady wall pressure were obtained using fast-responding pressure transducers over a range of operating conditions. The results show that the axial stage works on the positive slope of the performance characteristic curve from choke to stall at low-speed operating conditions, and mainly features rotating instability. Rotating stall is also observed in the impeller (IMP) and diffuser passages. At medium-speed operating conditions, the centrifugal stage suffers a high-frequency mild surge, alternating with rotating stall. With the increase in back pressure, the mild surge diminishes, and rotating stall persists. This behavior is similar to a two-regime-surge, which has been reported for centrifugal compressors. At high-speed operating conditions, the compressor directly reaches surge without other instabilities. Further analysis of the spatial pattern of the rotating stall revealed the existence of a high-pressure region near the volute tongue, resulting in obvious pressure distortion along the circumferential direction at the volute inlet. This induced the amplitude difference of stall cells in corresponding diffuser passages. The disturbance caused by stall cells propagates upstream through the blade passage, and the largest pressure disturbance induced by the stall cell propagation appears in a circumferential position 45 deg downstream of the volute tongue at the impeller inlet and the axial stage inlet.

References

1.
Trébinjac
,
I.
,
Bulot
,
N.
,
Ottavy
,
X.
, and
Buffaz
,
N.
,
2011
, “
Surge Inception in a Transonic Centrifugal Compressor Stage
,” ASME Paper No. GT2011-45116.10.1115/GT2011-45116
2.
Mazzawy
,
R. S.
,
1980
, “
Surge-Induced Structural Loads in Gas Turbines
,”
ASME J. Eng. Power
,
102
(
1
), pp.
162
168
.10.1115/1.3230217
3.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
4.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors-Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
5.
Moore
,
F. K.
,
1984
, “
A Theory of Rotating Stall of Multistage Axial Compressors: Part I—Small Disturbances
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
313
320
.10.1115/1.3239565
6.
McDougall
,
N.
,
Cumpsty
,
N.
, and
Hynes
,
T.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.10.1115/1.2927406
7.
Day
,
I.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
8.
Silvestri
,
P.
,
Reggio
,
F.
,
Niccolini Marmont Du Haut Champ
,
C. A.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2022
, “
Compressor Surge Precursors for a Turbocharger Coupled to a Pressure Vessel
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111014
.10.1115/1.4055479
9.
Lepicovsky
,
J.
, and
Braunscheidel
,
E. P.
,
2006
, “
Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor
,” ASME Paper No. GT2006-91209. 10.1115/GT2006-91209
10.
Courtiade
,
N.
,
Ottavy
,
X.
, and
Gourdain
,
N.
,
2011
, “
Experimental Investigation of Rotating Stall in a High Speed Multi-Stage Axial Compressor
,”
Ninth European Conference on Turbomachinery
,
Istanbul, Turkey
, Mar. 21–25, pp.
159
168
.https://www.researchgate.net/publication/266866977_Experimental_investigation_of_rotating_stall_in_a_high_speed_multi-stage_axial_compressor
11.
Schreiber
,
J.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2017
, “
Observations on Rotating Instabilities and Spike Type Stall Inception in a High-Speed Multistage Compressor
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
11
.10.1155/2017/7035870
12.
Kumar
,
S. S.
,
Bhanudasji Alone
,
D.
,
Thimmaiah
,
S. M.
,
Mudipalli
,
J. R. R.
,
Kumar
,
L.
,
Ganguli
,
R.
,
Kandagal
,
S. B.
, and
Jana
,
S.
,
2021
, “
Aerodynamic Behavior of a Transonic Axial Flow Compressor Stage With Self-Recirculating Casing Treatment
,”
Aerosp. Sci. Technol.
,
112
, p.
106587
.10.1016/j.ast.2021.106587
13.
Sheng
,
H.
,
Huang
,
W.
,
Zhang
,
T.
, and
Huang
,
X.
,
2014
, “
Active/Passive Hybrid Control System for Compressor Surge Based on Fuzzy Logic
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p. 092601.10.1115/1.4026953
14.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
.10.1115/1.2929146
15.
Zheng
,
X. Q.
, and
Liu
,
A. X.
,
2015
, “
Experimental Investigation of Surge and Stall in a High-Speed Centrifugal Compressor
,”
J. Propul. Power
,
31
(
3
), pp.
815
825
.10.2514/1.B35448
16.
Sun
,
Z. Z.
,
Zheng
,
X. Q.
, and
Kawakubo
,
T.
,
2018
, “
Experimental Investigation of Instability Inducement and Mechanism of Centrifugal Compressors With Vaned Diffuser
,”
Appl. Therm. Eng.
,
133
, pp.
464
471
.10.1016/j.applthermaleng.2018.01.071
17.
Zheng
,
X. Q.
,
Sun
,
Z. Z.
,
Tomoki
,
K.
, and
Hideaki
,
T.
,
2017
, “
Experimental Investigation of Surge and Stall in a Turbocharger Centrifugal Compressor With a Vaned Diffuser
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
493
506
.10.1016/j.expthermflusci.2016.11.036
18.
Lou
,
F.
,
Fabian
,
J. C.
, and
Key
,
N.
,
2017
, “
Stall Inception in a High Speed Centrifugal Compressor During Speed Transients
,”
ASME J. Turbomach.
,
139
(
12
), p.
121004
.10.1115/1.4037759
19.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2017
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
.10.1115/1.4034633
20.
Niu
,
Z. T.
,
Sun
,
Z. Z.
, and
Wang
,
B. T.
,
2020
, “
Effects of Non-Axisymmetric Volute on Rotating Stall in the Vaneless Diffuser of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
, 144(5), p.
051015
.10.1115/1.4053389
21.
Owen
,
A. K.
, and
Davis
,
M. W.
,
1994
, “
Modeling the Dynamic Behavior of an Axial-Centrifugal Compression System
,” AIAA Paper No. 94-2802.10.2514/6.1994-2802
22.
Hale
,
A. A.
, and
Davis
,
M. W.
,
1992
, “
DYNamic Turbine Engine Compressor Code DYNTECC - Theory and Capabilities
,” AIAA Paper No. 92-3190.10.2514/6.1992-3190
23.
Owen
,
A. K.
,
Mattern
,
D. L.
,
Braun
,
D. C.
, and
Le
,
D. K.
,
1996
, “
Forced Response Testing of an Axi-Centrifugal Turboshaft Engine
,” AIAA Paper No. 96-2573.10.2514/6.1996-2573
24.
Cousins
,
W. T.
,
1997
, “
The Dynamics of Stall and Surge Behavior in Axial-Centrifugal Compressors
,”
Ph.D. Dissertation
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.https://vtechworks.lib.vt.edu/server/api/core/bitstreams/775470ea-f3f2-4da8-9282-41c7f5b592a6/content#:~:text=The%20phenomena%20of%20stall%20and,facing%20probe%20provides%20flow%20information.
25.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022605
.10.1115/1.4034239
26.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092605
.10.1115/1.4038765
27.
Li
,
J.
,
Wen
,
M.
,
Wang
,
B.
, and
Zheng
,
X.
,
2023
, “
Investigation on the Unsteady Surge Flow Behavior of an Axial-Centrifugal Compressor
,” ASME Paper No. GT2023-103407. 10.1115/GT2023-103407
28.
Lin
,
Y.
,
Fan
,
T.
, and
Zheng
,
X.
,
2021
, “
Roles of Recirculating Bubble on the Performance of Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
118
, p.
107073
.10.1016/j.ast.2021.107073
29.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing Company
,
Malabar, FL
.
30.
Bianchini
,
A.
,
Biliotti
,
D.
,
Giachi
,
M.
,
Belardini
,
E.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,” ASME Paper No. GT2014-26401.10.1115/GT2014-26401
31.
Day
,
I. J.
,
1994
, “
Axial Compressor Performance During Surge
,”
J. Propul. Power
,
10
(
3
), pp.
329
336
.10.2514/3.23760
32.
Zheng
,
X. Q.
, and
Liu
,
A. X.
,
2015
, “
Phenomenon and Mechanism of Two-Regime-Surge in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
8
), p.
081007
.10.1115/1.4029547
33.
Lin
,
Y.
,
2021
, “
Mechanisms and Prediction of Flow Instability in Centrifugal Compressors
,” Ph.D. dissertation,
Tsinghua University
,
Beijing, China
.
34.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2018
, “
Stability Improvement of a Turbocharger Centrifugal Compressor by a Nonaxisymmetric Vaned Diffuser
,”
ASME J. Turbomach.
,
140
(
4
), p.
041007
.10.1115/1.4038875
35.
Sun
,
Z.
,
Zheng
,
X.
,
Linghu
,
Z.
,
Kawakubo
,
T.
,
Tamaki
,
H.
, and
Wang
,
B.
,
2019
, “
Influence of Volute Design on Flow Field Distortion and Flow Stability of Turbocharger Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
233
(
3
), pp.
484
494
.10.1177/0954407017746281
You do not currently have access to this content.