Abstract

This numerical study focuses on the characterization of prechamber-enabled mixing-controlled combustion (PC-MCC) at ∼18 bar brake mean effective pressure (BMEP) and 2200 rpm with 10% by volume ethanol-gasoline blend (E10) and pure ethanol (E100). Computational fluid dynamic (CFD) simulations of a stock and prechamber retrofitted single-cylinder Caterpillar C9.3B are carried out using CONVERGE. Prechamber equivalence ratio at spark timing, prechamber spark timing advance, and main chamber injection strategy are assessed with respect to their impact on ignition assistance performance and emissions characteristics relative to a diesel baseline at the same boundary conditions. Simulation results indicate that PC-MCC is flex-fuel capable and operates well for both E10 and E100 at the operating conditions considered. The results demonstrate that the use of a pilot-main injection strategy enables spark timing in the prechamber to be advanced and thus reduces spark plug firing pressure while maintaining robust ignition assistance. Results also indicate that the rich prechamber operation is favored for improved ignition assistance capabilities. The findings of this work suggest that a heavy-duty vehicle using a PC-MCC engine can utilize any blend of gasoline and ethanol, up to including pure ethanol, with no major sacrifices in performance relative to the diesel engine.

References

1.
Tree
,
D. R.
, and
Svensson
,
K. I.
,
2007
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
272
309
.10.1016/j.pecs.2006.03.002
2.
Gross
,
J.
,
Chowdhury
,
M.
,
Dempsey
,
A.
, and
Allen
,
C.
,
2023
, “
Soot Formation and Ignition Characteristics of Ethanol/Gasoline Blends in a Rapid Compression Machine
,”
SAE
Paper No. 2023-01-0385.10.4271/2023-01-0385
3.
Jayakumar
,
C.
,
Zheng
,
Z.
,
Joshi
,
U.
,
Bryzik
,
W.
,
Henein
,
N.
, and
Sattler
,
E.
,
2012
, “
Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels With Different Cetane Number and Volatility
,”
SAE
Paper No. 2012-01-1317.10.4271/2012-01-1317
4.
Rosseel
,
E.
, and
Sierens
,
R.
,
1996
, “
The Physical and the Chemical Part of the Ignition Delay in Diesel Engines
,”
SAE
Paper No. 961123.10.4271/961123
5.
Mueller
,
C. J.
, and
Musculus
,
M. P.
,
2001
, “
Glow Plug Assisted Ignition and Combustion of Methanol in an Optical di Diesel Engine
,”
SAE
Paper No. 2001-01-2004.10.4271/2001-01-2004
6.
Amezcua
,
E. R.
,
Kim
,
K.
,
Rothamer
,
D.
, and
Kweon
,
C.
,
2022
, “
Ignition Sensitivity Analysis for Energy-Assisted Compression-Ignition Operation on Jet Fuels With Varying Cetane Number
,”
SAE
Paper No. 2022-01-0443.10.4271/2022-01-0443
7.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. 2015-01-0832.10.4271/2015-01-0832
8.
Kumar
,
P.
, and
Zhang
,
Y.
,
2022
, “
Variable Valve Strategy Evaluation for Low-Load Operation in a Heavy-Duty Gasoline Compression Ignition Engine
,”
Energies
,
15
(
6
), p.
2017
.10.3390/en15062017
9.
Gainey
,
B.
,
Yan
,
Z.
,
Rahimi-Boldaji
,
M.
,
Lawler
,
B.
,
2020
, “
On the Effects of Injection Strategy, EGR, and Intake Boost on TSCI With Wet Ethanol
,”
ASME
Paper No. ICEF2019-7164.10.1115/ICEF2019-7164
10.
Gainey
,
B.
,
Yan
,
Z.
,
Gohn
,
J.
,
Rahimi Boldaji
,
M.
, and
Lawler
,
B.
,
2019
, “
TSCI With Wet Ethanol: An Investigation of the Effects of Injection Strategy on a Diesel Engine Architecture
,”
SAE
Paper No. 2019-01-1146.10.4271/2019-01-1146
11.
Gainey
,
B.
,
Bhatt
,
A.
,
Gandolfo
,
J.
,
Vedpathak
,
K.
,
Pearce
,
C.
,
Redon
,
F.
, and
Lawler
,
B.
,
2023
, “
Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine
,”
SAE
Paper No. 2023-01-0335.10.4271/2023-01-0335
12.
Zheng
,
Z.
,
Chen
,
P.
,
Zhang
,
F.
,
Yao
,
M.
,
Wang
,
H.
, and
Liu
,
H.
,
2022
, “
Experimental Study on the Effect of the Thermal Barrier Coated (TBC) Piston on Combustion of Gasoline Compression Ignition (GCI)
,”
Appl. Therm. Eng.
,
217
, p.
119068
.10.1016/j.applthermaleng.2022.119068
13.
Yan
,
Z.
,
Levi
,
A.
,
Zhang
,
Y.
,
Sellnau
,
M.
,
Filipi
,
Z.
, and
Lawler
,
B.
,
2023
, “
A Numerical Evaluation and Guideline for Thermal Barrier Coatings on Gasoline Compression Ignition Engines
,”
Int. J. Engine Res.
, 24(5), pp. 2206–2222.10.1177/14680874221114534
14.
Babu
,
A.
,
Koutsakis
,
G.
,
Kokjohn
,
S.
, and
Andrie
,
M.
,
2022
, “
Experimental and Analytical Study of Temperature Swing Piston Coatings in a Medium-Duty Diesel Engine
,”
SAE
Paper No. 2022-01-0442.10.4271/2022-01-0442
15.
Dong
,
Y.
,
Kaario
,
O.
,
Hassan
,
G.
,
Ranta
,
O.
,
Larmi
,
M.
, and
Johansson
,
B.
,
2020
, “
High-Pressure Direct Injection of Methanol and Pilot Diesel: A Non-Premixed Dual-Fuel Engine Concept
,”
Fuel
,
277
, p.
117932
.10.1016/j.fuel.2020.117932
16.
Frankl
,
S.
,
Gleis
,
S.
,
Karmann
,
S.
,
Prager
,
M.
, and
Wachtmeister
,
G.
,
2020
, “
Investigation of Ammonia and Hydrogen as CO2-Free Fuels for Heavy Duty Engines Using a High Pressure Dual Fuel Combustion Process
,”
Int. J. Engine Res.
,
22
(
10
), pp.
3196
3208.
10.1177/1468087420967873
17.
Gleis
,
S.
,
Frankl
,
S.
,
Waligorski
,
D.
,
Prager
,
D.-I. M.
, and
Wachtmeister
,
P. D.-I. G.
,
2019
, “
Investigation of the High-Pressure-Dual-Fuel (HPDF) Combustion Process of Natural Gas on a Fully Optically Accessible Research Engine
,”
SAE
Paper No. 2019-01-2172.10.4271/2019-01-2172
18.
McTaggart-Cowan
,
G.
,
Mann
,
K.
,
Huang
,
J.
,
Singh
,
A.
,
Patychuk
,
B.
,
Zheng
,
Z. X.
, and
Munshi
,
S.
,
2015
, “
Direct Injection of Natural Gas at Up to 600 Bar in a Pilot-Ignited Heavy-Duty Engine
,”
SAE Int. J. Engines
,
8
(
3
), pp.
981
996
.10.4271/2015-01-0865
19.
Zeman
,
J.
,
Yan
,
Z.
,
Bunce
,
M.
, and
Dempsey
,
A.
,
2023
, “
Assessment of Design and Location of an Active Prechamber Igniter to Enable Mixing-Controlled Combustion of Ethanol in Heavy-Duty Engines
,”
Int. J. Engine Res.
,
24
(
9
), pp.
4226
4250
.10.1177/14680874231185421
20.
Dempsey
,
A. B.
,
Zeman
,
J.
, and
Wall
,
M.
,
2021
, “
A System to Enable Mixing Controlled Combustion With High Octane Fuels Using a Prechamber and High-Pressure Direct Injector
,”
Front Mech. Eng.
,
7
, p.
7
.10.3389/fmech.2021.637665
21.
Dempsey
,
A.
,
Chowdhury
,
M.
,
Kokjohn
,
S.
, and
Zeman
,
J.
,
2022
, “
Prechamber Enabled Mixing Controlled Combustion—A Fuel Agnostic Technology for Future Low Carbon Heavy-Duty Engines
,”
SAE
Paper No. 2022-01-0449.10.4271/2022-01-0449
22.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
Converge 3.0
,
Convergent Science
,
Madison, WI
.
23.
Ren
,
S.
,
Kokjohn
,
S. L.
,
Wang
,
Z.
,
Liu
,
H.
,
Wang
,
B.
, and
Wang
,
J.
,
2017
, “
A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction
,”
Fuel
,
208
, pp.
447
468
.10.1016/j.fuel.2017.07.009
24.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
E.
,
2023
,
CONVERGE 3.0 Manual
,
Convergent Science
,
Madison, WI
.
25.
Yang
,
X.
,
Solomon
,
A.
, and
Kuo
,
T. W.
,
2012
, “
Ignition and Combustion Simulations of Spray-Guided SIDI Engine Using Arrhenius Combustion With Spark-Energy Deposition Model
,”
SAE
Paper No. 2012-01-0147.10.4271/2012-01-0147
26.
Duva
,
B. C.
,
Chance
,
L.
, and
Toulson
,
E.
,
2019
, “
Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures With CO2 Dilution
,”
SAE
Paper No. 2019-01-0572.
27.
Heywood
,
J.
,
2021
, “
Internal Combustion Engine Fundamentals
, 2nd ed.,”
McGraw-Hill
,
New York
, accessed Apr. 1, 2021, https://www.mheducation.com/highered/product/internal-combustion-engine-fundamentals-2e-heywood/9781260116106.html
28.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust Flame
,
48
, pp.
191
210
.10.1016/0010-2180(82)90127-4
29.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.10.1016/j.pecs.2012.03.004
30.
Nada
,
Y.
,
Komatsubara
,
Y.
,
Pham
,
T.
,
Yoshii
,
F.
, and
Kidoguchi
,
Y.
,
2014
, “
Evaluation of NOx Production Rate in Diesel Combustion Based on Measurement of Time Histories of NOx Concentrations and Flame Temperature
,”
SAE Int. J. Engines
,
8
(
1
), pp.
303
313
.10.4271/2014-32-0133
31.
Novakovic
,
M.
,
Tuner
,
M.
,
Garcia
,
A.
, and
Verhelst
,
S.
,
2022
, “
An Experimental Investigation of Directly Injected E85 Fuel in a Heavy-Duty Compression Ignition Engine
,”
SAE
Paper No. 2022-01-1050.10.4271/2022-01-1050
32.
Blumreiter
,
J.
,
Johnson
,
B.
,
Zhou
,
A.
,
Magnotti
,
G.
,
Longman
,
D.
, and
Som
,
S.
,
2019
, “
Mixing-Limited Combustion of Alcohol Fuels in a Diesel Engine
,”
SAE
Paper No. 2019-01-0552.10.4271/2019-01-0552
33.
Svensson
,
M.
,
Tuner
,
M.
, and
Verhelst
,
S.
,
2022
, “
Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine
,”
SAE
Paper No. 2022-01-1093.10.4271/2022-01-1093
34.
Dierickx
,
J.
,
Dejaegere
,
Q.
,
Peeters
,
J.
,
Sileghem
,
L.
, and
Verhelst
,
S.
,
2023
, “
Performance and Emissions of a High-Speed Marine Dual-Fuel Engine Operating With Methanol-Water Blends as a Fuel
,”
Fuel
,
333
, p.
126349
.10.1016/j.fuel.2022.126349
35.
McCoole
,
M. E.
,
Tozzi
,
L.
, and
Tribble
,
D. L.
,
2006
, “
Solutions for Improving Spark Plug Life in High Efficiency, High Power Density, Natural Gas Engines
,”
ASME
Paper No. ICES2006-1417. 10.1115/ICES2006-1417
36.
Paz
,
J.
,
Staaden
,
D.
, and
Kokjohn
,
S.
,
2018
, “
Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load
,”
SAE
Paper No. 2018-01-0898.10.4271/2018-01-0898
37.
Liu
,
H.
,
Mao
,
B.
,
Liu
,
J.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2018
, “
Pilot Injection Strategy Management of Gasoline Compression Ignition (GCI) Combustion in a Multi-Cylinder Diesel Engine
,”
Fuel
,
221
, pp.
116
127
.10.1016/j.fuel.2018.01.073
You do not currently have access to this content.