Abstract

In a future energy system prospective, predictably dominated by (often) remote and (always) unsteady, nondispatchable renewable power generation from solar and wind resources, hydrogen (H2) and ammonia (NH3) have emerged as logistically convenient, chemically simple and carbon-free chemicals for energy transport and storage. Moreover, the reliability of supply of a specific fuel feedstock will remain unpredictable in the upcoming energy transition period. Therefore, the ability of gas turbine combustion systems to seamlessly switch between very disparate types of fuels must be ensured, aiming at intrinsically fuel-flexible combustion systems, i.e., capable of operating cleanly and efficiently with novel carbon-free energy vectors like H2 and NH3 as well as conventional fossil fuels, e.g., natural gas or fuel oils (back-up feedstock). In this context, a convenient feature of Ansaldo's constant pressure sequential combustion (CPSC) system, resulting in a fundamental advantage compared to alternative approaches, is the possibility of controlling the amount of fuel independently fed to the two combustion stages, depending on the fuel reactivity and combustion characteristics. The fuel-staging strategy implemented in the CPSC system, due to the intrinsic characteristics of the auto-ignition stabilized reheat flame, has already been proven able of handling fuels with large hydrogen fractions without significant penalties in efficiency and emissions of pollutants. However, ammonia combustion is governed by widely different thermo-chemical processes compared to hydrogen, requiring a considerably different approach to mitigate crucial issues with extremely low flame reactivity (blow-out) and formation of significant amounts of undesired pollutants and greenhouse gases (NOx and N2O). In this work, we present a fuel-flexible operational concept for the CPSC system and, based on unsteady Reynolds-Averaged Navier–Stokes (uRANS) and large eddy simulation (LES) performed in conjunction with detailed chemical kinetics, we explore for the first time full-load operation of the CPSC architecture in a Rich-Quench-Lean (RQL) strategy applied to combustion of partially-decomposed ammonia. Results from the numerical simulations confirm the main features of ammonia-firing in RQL operation already observed from previous work on different combustion systems and suggests that the CPSC architecture has excellent potential to operate in RQL-mode with low NOx and N2O emissions and good combustion efficiency.

References

1.
Dreizler
,
A.
,
Pitsch
,
H.
,
Scherer
,
V.
,
Schulz
,
C.
, and
Janicka
,
J.
,
2021
, “
The Role of Combustion Science and Technology in Low and Zero Impact Energy Transformation Processes
,”
Appl. Energy Combust. Sci.
,
7
, p.
100040
.10.1016/j.jaecs.2021.100040
2.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1–20 atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
3.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
4.
Zel'dovich
,
Y.
,
Barenblatt
,
G.
,
Librovich
,
V.
, and
Makhviladze
,
G.
,
1985
,
The Mathematical Theory of Combustion and Explosions
,
Plenum
,
New York
.
5.
Kido
,
H.
, and
Hashimoto
,
J.
,
1999
, “
Turbulent Combustion Characteristics of Hydrogen Mixtures
,” Tech. Rep. Memoirs of the Faculty of Engineering, Vol.
59
, No.
2
,
Department of Mechanical Engineering, Kyushu University
,
Fukuoka, Japan
.
6.
Lipatnikov
,
A. N.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.10.1016/j.pecs.2004.07.001
7.
Day
,
M.
,
Tachibana
,
S.
,
Bell
,
J.
,
Lijewski
,
M.
,
Beckner
,
V.
, and
Cheng
,
R. K.
,
2015
, “
A Combined Computational and Experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames II. Hydrogen Flames
,”
Combust. Flame
,
162
(
5
), pp.
2148
2165
.10.1016/j.combustflame.2015.01.013
8.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
276
283
.10.1115/1.1473155
9.
Venkateswaran
,
P.
,
Marshall
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Scaling Turbulent Flame Speeds of Negative Markstein Length Fuel Blends Using Leading Points Concepts
,”
Combust. Flame
,
162
(
2
), pp.
375
387
.10.1016/j.combustflame.2014.07.028
10.
Daniele
,
S.
,
Jansohn
,
P.
,
Mantzaras
,
J.
, and
Boulouchos
,
K.
,
2011
, “
Turbulent Flame Speed for Syngas at Gas Turbine Relevant Conditions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2937
2944
.10.1016/j.proci.2010.05.057
11.
Daniele
,
S.
,
Mantzaras
,
J.
,
Jansohn
,
P.
,
Denisov
,
A.
, and
Boulouchos
,
K.
,
2013
, “
Flame Front/Turbulence Interaction for Syngas Fuels in the Thin Reaction Zone Regime: Turbulent and Stretched Laminar Flame Speeds at Elevated Pressures and Temperatures
,”
J. Fluid Mech.
,
724
, pp.
36
68
.10.1017/jfm.2013.141
12.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F. A.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust. Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
13.
Rieth
,
M.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2023
, “
The Effect of Pressure on Lean Premixed Hydrogen-Air Flames
,”
Combust. Flame
,
250
, p.
112514
.10.1016/j.combustflame.2022.112514
14.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
15.
Indlekofer
,
T.
,
Wiseman
,
S.
,
Nogenmyr
,
K.-J.
,
Larfeldt
,
J.
, and
Gruber
,
A.
,
2023
, “
Numerical Investigation of Rich-Lean Staging in a Sgt-750 Scaled Dle Burner With Partially-Decomposed Ammonia
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041018
.10.1115/1.4055725
16.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultra-Low Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
17.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
18.
Bothien
,
M.
,
Ciani
,
A.
,
Wood
,
J.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
19.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Hydrogen Combustion at Auto-Ignitive Conditions: Ignition, Stability and Turbulent Reaction-Front Velocity
,”
Combust. Flame
,
229
, p.
111385
.10.1016/j.combustflame.2021.02.031
20.
Wind
,
T.
,
Güthe
,
F.
, and
Syed
,
K.
,
2014
, “
Co-Firing of Hydrogen and Natural Gases in Lean Premixed Conventional and Reheat Burners (Alstom GT26)
,”
ASME
Paper No. GT2014-25813.10.1115/GT2014-25813
21.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
22.
Bothien
,
M.
,
Ciani
,
A.
,
Wood
,
J.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines - the Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
23.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for co2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794.10.1115/GT2020-14794
24.
Ciani
,
A.
,
Wood
,
J.
,
Maurer
,
M.
,
Bunkute
,
B.
,
Pennell
,
D.
,
Riazantsev
,
S.
, and
Früchtel
,
G.
,
2021
, “
Center Body Burner for Sequential Combustion: Superior Performance at Lower Emissions
,”
ASME
Paper No. GT2021-59074.10.1115/GT2021-59074
25.
Ditaranto
,
M.
,
Saanum
,
I.
, and
Larfeldt
,
J.
,
2021
, “
Experimental Study on High Pressure Combustion of Decomposed Ammonia: How Can Ammonia Be Best Used in a Gas Turbine?
,”
ASME
Paper No. GT2021-60057.10.1115/GT2021-60057
26.
Pennell
,
D.
,
Ciani
,
A.
,
Smith
,
R.
,
Tay-Wo-Chong
,
L.
, and
Sanchez
,
P.
,
2023
, “
GT36 First Stage Development Enabling Load and Fuel (H2) Flexibility With Low Emissions
,”
ASME
Paper No. GT2023-103568.10.1115/GT2023-103568
27.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
28.
Jiang
,
Y.
,
Gruber
,
A.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2020
, “
An Updated Short Chemical-Kinetic Nitrogen Mechanism for Carbon-Free Combustion Applications
,”
Int. J. Energy Res.
,
44
(
2
), pp.
795
810
.10.1002/er.4891
29.
Smoke
,
M.
, and
Giovangigli
,
V.
,
1991
, “
Formulation of the Premixed and Nonpremixed Test Problems
,”
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,
Elsevier
,
Berlin/Heidelberg, Germany
, pp.
1
28
.
30.
Fureby
,
C.
,
2012
, “
A Comparative Study of Flamelet and Finite Rate Chemistry Les for a Swirl Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041503
.10.1115/1.4004718
31.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
A Criterion Based on Computational Singular Perturbation for the Identification of Quasi Steady State Species: A Reduced Mechanism for Methane Oxidation With No Chemistry
,”
Combust. Flame
,
154
(
4
), pp.
761
774
.10.1016/j.combustflame.2008.04.025
32.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
35
35
.10.1088/1367-2630/6/1/035
33.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2012
, “
Premixed Flame Flashback in Wall Boundary Layers Studied by Long-Distance micro-PIV
,”
Exp. Fluids
,
52
(
2
), pp.
347
360
.10.1007/s00348-011-1226-8
34.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
35.
Gruber
,
A.
,
Richardson
,
E. S.
,
Aditya
,
K.
, and
Chen
,
J. H.
,
2018
, “
Direct Numerical Simulations of Premixed and Stratified Flame Propagation in Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110507
.10.1103/PhysRevFluids.3.110507
36.
ANSYS
,
2019
, “
Ansys Fluent Manual 2019R3
,” ANSYS, Canonsburg, PA.
37.
Steinbach
,
C.
,
Ulibarri
,
N.
,
Garay
,
M.
,
Luebcke
,
H.
,
Meeuwissen
,
T.
,
Haffner
,
K.
,
Aubry
,
J.
, and
Kodim
,
D.
,
2006
, “
Combustion Optimization for the ALSTOM GT13E2 Gas Turbine
,”
ASME
Paper No. GT2006-90943.10.1115/GT2006-90943
38.
CentaurSoft
,
2021
, “
Centaur 15
,” CentaurSoft.
39.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Foeller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No. GT2010-22769.10.1115/GT2010-22769
40.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
41.
Eder
,
A. J.
,
Silva
,
C. F.
,
Haeringer
,
M.
,
Kuhlmann
,
J.
, and
Polifke
,
W.
,
2023
, “
Incompressible Versus Compressible Large Eddy Simulation for the Identification of Premixed Flame Dynamics
,”
Int. J. Spray Combust. Dyn.
,
15
(
1
), pp.
16
32
.10.1177/17568277231154204
You do not currently have access to this content.