Abstract

Recent improvements in computing power and numerical techniques have enabled us resolve minute details of spray plume behavior and its wall boundary interactions, and made detailed spray simulations using large-eddy simulation (LES) turbulence models available to many more engineers. However, guidelines for parcel-based spray simulation boundary and initial conditions are still based on results from lower-resolution and Reynolds averaged Navier–Stokes (RANS) simulations. Hence, it is necessary to critically examine those assumptions and compare their impact with results using a RANS turbulence model. Three different parameters, including whether a simulation includes a detailed injector tip geometry or a flat surface, whether parcels are initialized at the counterbore exit, which is more common, or at the nozzle exit, and whether to use an experimentally derived rate of injection or one-way coupling with a separate internal nozzle volume of fluid simulation, were examined with an LES turbulence model. Both local data close to the injector and global penetration results were used to compare simulations. Local data, such as the local liquid volume fraction, showed greater variation between the conditions, which may have an impact on mixing and combustion predictions in engine applications. Spray penetration and other global measures demonstrated limited sensitivity to the boundary conditions/initialization procedure. Results were also compared with prior results that used a RANS turbulence model. RANS simulations had overall smoother responses to the changes, as would be expected, but LES simulations showed similar trends in the effects for the measured variables.

References

1.
MIT Energy Initiative
,
2019
, “
Insights Into Future Mobility
,”
MIT Energy Initiative
, Cambridge, MA, p.
220
.
2.
International Energy Agency
,
2021
, “
Global EV Outlook 2021—Accelerating Ambitions Despite the Pandemic
,”
IEA
, Paris, France, p.
101
.
3.
Ra
,
Y.
, and
Reitz
,
R.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
4.
Yue
,
Z.
, and
Reitz
,
R. D.
,
2019
, “
Application of an Equilibrium-Phase Spray Model to Multicomponent Gasoline Direct Injection
,”
Energy Fuels
,
33
(
4
), pp.
3565
3575
.10.1021/acs.energyfuels.8b04435
5.
Ren
,
Z.-Y.
,
Zhang
,
L.
, and
Ren
,
X.-H.
,
2018
, “
A Hybrid Multi-Component Vaporization Model for the Vaporization Simulation of Petroleum Fuel Drops
,”
Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys.
,
39
, pp.
2326
2332
.
6.
Neroorkar
,
K.
, and
Schmidt
,
D.
,
2011
, “
Modeling of Vapor-Liquid Equilibrium of Gasoline-Ethanol Blended Fuels for Flash Boiling Simulations
,”
Fuel
,
90
(
2
), pp.
665
673
.10.1016/j.fuel.2010.09.035
7.
Duronio
,
F.
,
Ranieri
,
S.
,
Montanaro
,
A.
,
Allocca
,
L.
, and
De Vita
,
A.
,
2021
, “
ECN Spray G Injector: Numerical Modelling of Flash-Boiling Breakup and Spray Collapse
,”
Int. J. Multiphase Flow
,
145
, p.
103817
.10.1016/j.ijmultiphaseflow.2021.103817
8.
Chang
,
M.
,
Lee
,
Z.
,
Park
,
S.
, and
Park
,
S.
,
2020
, “
Characteristics of Flash Boiling and Its Effects on Spray Behavior in Gasoline Direct Injection Injectors: A Review
,”
Fuel
,
271
, p.
117600
.10.1016/j.fuel.2020.117600
9.
Duronio
,
F.
,
De Vita
,
A.
,
Allocca
,
L.
, and
Anatone
,
M.
,
2020
, “
Gasoline Direct Injection Engines—A Review of Latest Technologies and Trends. Part 1: Spray Breakup Process
,”
Fuel
,
265
, p.
116948
.10.1016/j.fuel.2019.116948
10.
Malaguti
,
S.
,
Fontanesi
,
S.
,
Cantore
,
G.
,
Montanaro
,
A.
, and
Allocca
,
L.
,
2013
, “
Modelling of Primary Breakup Process of a Gasoline Direct Engine Multi-Hole Spray
,”
Atomization Sprays
,
23
(
10
), pp.
861
888
.10.1615/AtomizSpr.2013005867
11.
Chryssakis
,
C.
, and
Assanis
,
D. N.
,
2008
, “
A Unified Fuel Spray Breakup Model for Internal Combustion Engine Applications
,”
Atomization Sprays
,
18
(
5
), pp.
375
426
.10.1615/AtomizSpr.v18.i5.10
12.
Kong
,
S. C.
,
Senecal
,
P. K.
, and
Reitz
,
R. D.
,
1999
, “
Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines
,”
Oil Gas Sci. Technol.
,
54
(
2
), pp.
197
204
.10.2516/ogst:1999015
13.
Tu
,
P.-W.
,
Xu
,
H.
,
Srivastava
,
D. K.
,
Dean
,
K.
,
Jing
,
D.
,
Cao
,
L.
,
Weall
,
A.
, and
Venus
,
J. K.
,
2015
, “
Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics
,”
SAE
Paper No. 2015-01-1906. 10.4271/2015-01-1906
14.
Shost
,
M. A.
,
Lai
,
M.-C.
,
Befrui
,
B.
,
Spiekermann
,
P.
, and
Varble
,
D. L.
,
2014
, “
GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods
,”
SAE
Paper No. 2014-01-1434. 10.4271/2014-01-1434
15.
Van Dam
,
N.
, and
Rutland
,
C.
,
2016
, “
Adapting Diesel Large-Eddy Simulation Spray Models for Direct-Injection Spark-Ignition Applications
,”
Int. J. Engine Res.
,
17
(
3
), pp.
291
315
.10.1177/1468087415572034
16.
Quan
,
S.
,
Senecal
,
P. K.
,
Pomraning
,
E.
,
Xue
,
Q.
,
Hu
,
B.
,
Rajamohan
,
D.
,
Deur
,
J. M.
, and
Som
,
S.
,
2016
, “
A One-Way Coupled Volume of Fluid and Eulerian-Lagrangian Method for Simulating Sprays
,”
ASME
Paper No. ICEF2016-9390. 10.1115/ICEF2016-9390
17.
Saha
,
K.
,
Quan
,
S.
,
Battistoni
,
M.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
, “
Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems
,”
SAE
Technical Paper No. 2017-01-0834. 10.4271/2017-01-0834
18.
Bode
,
M.
,
Falkenstein
,
T.
,
Le Chenadec
,
V.
,
Kang
,
S.
,
Pitsch
,
H.
,
Arima
,
T.
, and
Taniguchi
,
H.
,
2015
, “
A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector
,”
SAE
Technical Paper No. 2015-01-0949. 10.4271/2015-01-0949
19.
Mohan
,
B.
,
Badra
,
J.
,
Sim
,
J.
, and
Im
,
H. G.
,
2021
, “
Coupled in-Nozzle Flow and Spray Simulation of Engine Combustion Network Spray-G Injector
,”
Int. J. Engine Res.
,
22
(
9
), pp.
2982
2996
.10.1177/1468087420960612
20.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2014
, “
Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012204
.10.1115/1.4024861
21.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
García
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1095. 10.4271/2013-01-1095
22.
Kumar
,
A.
, and
Van Dam
,
N.
,
2023
, “
Study of Injector Geometry and Parcel Injection Location on Spray Simulation of the Engine Combustion Network Spray G Injector
,”
ASME J. Eng. Gas Turbines Power
,
145
(
7
), p.
071012
.10.1115/1.4062414
23.
Pickett
,
L. M.
,
2021
, “
Spray G' Operating Condition
,” ECN, Livermore, CA, accessed Apr. 2021, https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/spray-g-operating-condition/
24.
Duke
,
D. J.
,
Finney
,
C. E. A.
,
Kastengren
,
A.
,
Matusik
,
K.
,
Sovis
,
N.
,
Santodonato
,
L.
,
Bilheux
,
H.
,
Schmidt
,
D.
,
Powell
,
C.
, and
Toops
,
T.
,
2017
, “
High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector
,”
SAE
Paper No. 2017-01-0824. 10.4271/2017-01-0824
25.
Duke
,
D. J.
,
Kastengren
,
A. L.
,
Matusik
,
K. E.
,
Swantek
,
A. B.
,
Powell
,
C. F.
,
Payri
,
R.
,
Vaquerizo
,
D.
,
Itani
,
L.
,
Bruneaux
,
G.
,
Grover
,
R. O.
,
Parrish
,
S.
,
Markle
,
L.
,
Schmidt
,
D.
,
Manin
,
J.
,
Skeen
,
S. A.
, and
Pickett
,
L. M.
,
2017
, “
Internal and Near Nozzle Measurements of Engine Combustion Network ‘Spray G’ Gasoline Direct Injectors
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
608
621
.10.1016/j.expthermflusci.2017.07.015
26.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2021
,
Converge 3.0*
,
Convergent Science
,
Madison, WI
.
27.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.https://uwmadison.app.box.com/v/AandS
28.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Paper No. 980131.10.4271/980131
29.
Frossling
,
N.
,
1938
, “
Uber Die Verdunstung Fallender Tropfen
,”
Gerlands Beitr. Geophys.
, 52(1), pp.
170
216
.https://www.semanticscholar.org/paper/Uber-die-Verdunstung-fallender-Tropfen-Frossling/db115822864f0659bfa63b0bc89f136bceda6782
30.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
31.
Battistoni
,
M.
, and
Senecal
,
P. K.
,
2017
, “
Modeling of Internal and Near-Nozzle Flow for a Gasoline Direct Injection Fuel Injector
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052208
.10.1115/1.4032979
32.
Payri
,
R.
,
Gimeno
,
J.
,
Marti-Aldaravi
,
P.
, and
Vaquerizo
,
D.
,
2015
, “
Momentum Flux Measurements on an ECN GDi Injector
,”
SAE
Technical Paper No. 2015-01-1893. 10.4271/2015-01-1893
33.
Parrish
,
S. E.
,
2014
, “
Evaluation of Liquid and Vapor Penetration of Sprays From a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions
,”
SAE Int. J. Engines
,
7
(
2
), pp.
1017
1033
.10.4271/2014-01-1409
34.
Hwang
,
J.
,
Weiss
,
L.
,
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
,
Pickett
,
L. M.
, and
Skeen
,
S. A.
,
2020
, “
Spatio-Temporal Identification of Plume Dynamics by 3D Computed Tomography Using Engine Combustion Network Spray G Injector and Various Fuels
,”
Fuel
,
280
, p.
118359
.10.1016/j.fuel.2020.118359
You do not currently have access to this content.