Abstract

Microgas turbines are an on-site power and heat generation technology with a small footprint, low gaseous (NOx) and acoustic emissions, low maintenance, and high-grade heat. They entered the market at the dawn of the twentieth century; nevertheless, they achieved minimal success and a marginal role in the microgeneration market. Reciprocating internal combustion engines (ICE) raised considerable barriers hindering their market deployment, and fuel cells are also set to compete in this segment. In this scenario, this work presents an analysis of competitiveness grounded in the theory of constraints (TOC). To this end, a specific key performance indicator (KPI) has been produced, which combines technical, economic, and operational factors according to the end-user requirement. This indicator is a function of several penalty factors representing technology and market barriers, which aims to yield a unique insight into the most competitive technology for a given application, accounting for the uncertainty deriving from technical and economic elements. This novel methodology is applied to a new potential niche market: Power-to-Hydrogen-to-Power for remote applications. The methodology is applied to an independent rural community in South Wales for which a backup power system is assessed. Four technologies are considered in the analysis: reciprocating engines, fuel cells, and two different microturbines layouts. Finally, this work provides an overview of the possible R&D&I paths necessary to increase the competitiveness of microgas turbines in certain markets.

References

1.
European Turbine Network
,
2019
, “
Micro Gas Turbine Technology Summary
,” European Turbine Network, Brussels, Belgium.
2.
European Commission
,
2019
, “
The European Green Deal
,” European Commission, Brussels, Belgium, No. COM(2019)640.
3.
Okes
,
D.
,
2019
,
Root Cause Analysis: The Core of Problem Solving and Corrective Action
,
Quality Press
, Milwaukee, WI.
4.
Mustafa
,
A.
,
Abdollah
,
M. F. B.
,
Shuhimi
,
F. F.
,
Ismail
,
N.
,
Amiruddin
,
H.
, and
Umehara
,
N.
,
2015
, “
Selection and Verification of Kenaf Fibres as an Alternative Friction Material Using Weighted Decision Matrix Method
,”
Mater. Des.
,
67
, pp.
577
582
.10.1016/j.matdes.2014.10.091
5.
Gul
,
M.
, and
Guneri
,
A. F.
,
2016
, “
A Fuzzy Multi Criteria Risk Assessment Based on Decision Matrix Technique: A Case Study for Aluminum Industry
,”
J. Loss Prev. Process Ind.
,
40
, pp.
89
100
.10.1016/j.jlp.2015.11.023
6.
Hassan
,
M. F.
,
Safiee
,
M. Z.
,
Nor
,
N. H. M.
,
Abdol
,
M. N.
, and
Rahman
,
I. M.
,
2016
, “
Integration of ECQFD and Weighted Decision Matrix for Selection of Eco-Design Alternatives
,”
Int. J. Mech. Mechatron. Eng.
,
16
(
3
), pp.
27
33
.https://www.researchgate.net/publication/311736103_Integration_of_ECQFD_and_Weighted_Decision_Matrix_for_Selection_of_Eco-design_Alternatives
7.
Olabanji
,
O.
, and
Mpofu
,
K.
,
2014
, “
Comparison of Weighted Decision Matrix, and Analytical Hierarchy Process for CAD Design of Reconfigurable Assembly Fixture
,”
Proc. CIRP
,
23
, pp.
264
269
.10.1016/j.procir.2014.10.088
8.
Sánchez
,
D.
,
Bortkiewicz
,
A.
,
Rodríguez
,
J. M.
,
Martínez
,
G. S.
,
Gavagnin
,
G.
, and
Sánchez
,
T.
,
2016
, “
A Methodology to Identify Potential Markets for Small-Scale Solar Thermal Power Generators
,”
Appl. Energy
,
169
, pp.
287
300
.10.1016/j.apenergy.2016.01.114
9.
Tilocca
,
G.
,
Sánchez
,
D.
, and
Torres García
,
M.
,
2022
, “
Root Cause Analysis of the Lack of Market Success of Micro Gas Turbine Systems
,”
ASME
Paper No. GT2022-82146.10.1115/GT2022-82146
10.
Goldratt
,
E. M.
, and
Cox
,
J.
,
1984
,
The Goal: A Process of on-Going Improvement
,
North River Press. Inc
., Great Barrington, MA.
11.
Tulasi
,
C. L.
, and
Rao
,
A. R.
,
2012
, “
Review on Theory of Constraints
,”
Int. J. Adv. Eng. Technol.
,
3
(
1
), p.
334
.https://www.proquest.com/docview/1324997727
12.
Dettmer
,
H. W.
,
2007
, “
The Logical Thinking Process
,”
A Systems Approach to Complex Problem Solving
,
American Society for Quality
, Milwaukee, WI.
13.
Lorenczik
,
S.
,
Kim
,
S.
,
Wanner
,
B.
,
Bermudez Menendez
,
J. M.
,
Remme
,
U.
,
Hasegawa
,
T.
,
Keppler
,
J. H.
, et al.,
2020
, “
Projected Costs of Generating Electricity-2020 Edition
,”
International Energy Agency, Nuclear Energy Agency, Organisation for Economic Co-Operation and Development
, Report No.
NEA-7531
.https://www.iea.org/reports/projected-costs-ofgenerating-electricity-2020
14.
Purvins
,
A.
,
Sereno
,
L.
,
Ardelean
,
M.
,
Covrig
,
C.-F.
,
Efthimiadis
,
T.
, and
Minnebo
,
P.
,
2018
, “
Submarine Power Cable Between Europe and North America: A Techno-Economic Analysis
,”
J. Cleaner Prod.
,
186
, pp.
131
145
.10.1016/j.jclepro.2018.03.095
15.
Schmidt
,
O.
,
Melchior
,
S.
,
Hawkes
,
A.
, and
Staffell
,
I.
,
2019
, “
Projecting the Future Levelized Cost of Electricity Storage Technologies
,”
Joule
,
3
(
1
), pp.
81
100
.10.1016/j.joule.2018.12.008
16.
Davis
,
M. W.
,
Gifford
,
A. H.
, and
Krupa
,
T. J.
,
1999
, “
Microturbines-an Economic and Reliability Evaluation for Commercial, Residential, and Remote Load Applications
,”
IEEE Trans. Power Syst.
,
14
(
4
), pp.
1556
1562
.10.1109/59.801959
17.
Vijayamohanan Pillai
,
N.
,
2014
, “
Loss of Load Probability of a Power System
,”
J. Fundam. Renewable Energy Appl.
,
5
(
149
), pp.
1
9
.10.4172/2090-4541.1000149
18.
Macor
,
A.
, and
Benato
,
A.
,
2020
, “
Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health
,”
Energies
,
13
(
5
), p.
1044
.10.3390/en13051044
19.
Hou
,
S. S.
,
2020
, “
Investigation on the Impact of Passive Design Strategies on Care Home Energy Efficiency in the UK
,”
Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design
, Virtual Event, Austria, May 25–27, pp.
1
8
.https://dl.acm.org/doi/10.5555/3465085.3465161
20.
Walnum
,
H. T.
,
Alonso
,
M. J.
,
Clauß
,
J.
, and
Lindberg
,
K.
,
2019
, “
Characterization of Heat Load Profiles in Buildings and Their Impact on Demand Side Flexibility
,” IOP Conference Series: Materials Science and Engineering,
IOP Publishing
,
10th International Conference IAQVEC 2019: Indoor Air Quality, Ventilation and Energy Conservation in Buildings
, Bari, Italy, Sept. 5–7, Vol.
609
(
5
), p.
052035
.10.1088/1757-899X/609/5/052035
21.
Morgenstern
,
P.
,
Li
,
M.
,
Raslan
,
R.
,
Ruyssevelt
,
P.
, and
Wright
,
A.
,
2016
, “Benchmarking Acute Hospitals: Composite Electricity Targets Based on Departmental Consumption Intensities?”
Energy Buildings
,
118
, pp.
277
290
.10.1016/j.enbuild.2016.02.052
22.
Staffell
,
I.
,
Brett
,
D.
,
Brandon
,
N.
, and
Hawkes
,
A.
,
2012
, “
A Review of Domestic Heat Pumps
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9291
9306
.10.1039/c2ee22653g
23.
Escamilla
,
A.
,
Sánchez
,
D.
, and
García-Rodríguez
,
L.
,
2022
, “
Assessment of Power-to-Power Renewable Energy Storage Based on the Smart Integration of Hydrogen and Micro Gas Turbine Technologies
,”
Int. J. Hydrogen Energy
,
47
(
40
), pp.
17505
17525
.10.1016/j.ijhydene.2022.03.238
24.
Blair
,
N.
,
DiOrio
,
N.
,
Freeman
,
J.
,
Gilman
,
P.
,
Janzou
,
S.
,
Neises
,
T.
, and
Wagner
,
M.
,
2017
, “
System Advisor Model (SAM) General Description
,”
National Renewable Energy Laboratory
, Golden, CO, Report No. NREL/TP-6A20-70414.
25.
Joint Research Centre, European Commission
,
2022
, “
Photovoltaic Geographical Information System
,” accessed July 10, 2022, https://re.jrc.ec.europa.eu/pvg_tools/en/
26.
National Renewable Energy Laboratory, U.S. Department of Energy
,
2022
, “
National Solar Radiation Database
,” accessed July 10, 2022, https://nsrdb.nrel.gov/
27.
Aurelia Turbine Website
,
2023
, “Aurelia® A400 Turbine,” accessed Nov. 24, 2023, https://aureliaturbines.com/
28.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
,”
Sustainability
,
14
(
20
), p.
13305
.10.3390/su142013305
29.
Robinson
,
D. G.
,
Arent
,
D. J.
, and
Johnson
,
L.
,
2006
, “
Impact of Distributed Energy Resources on the Reliability of Critical Telecommunications Facilities
,”
INTELEC 06-Twenty-Eighth International Telecommunications Energy Conference
,
Providence, RI, Sept. 10–14, pp.
1
7
.10.1109/INTLEC.2006.251620
30.
Capstone Corporation
, 2009, “
Capstone C200 Microturbine Technical Reference
,” Capstone410066 Rev C.
31.
Darrow, K., Tidball, R., Wang, J., and Hampson, A.
,
2017
, “
Catalogue of CHP Technologies
,” U.S. Environment Protection Agency, Washington, DC.
32.
Ekwonu
,
M.
,
Perry
,
S.
, and
Oyedoh
,
E.
,
In
2013
, “
Modelling and Simulation of Gas Engines Using Aspen HYSYS
,”
J. Eng. Sci. Technol.
,
6
(
3
), pp.
1
4
.10.25103/jestr.063.01
33.
Marqusee
,
J.
,
Ericson
,
S.
, and
Jenket
,
D.
,
2020
, “
Emergency Diesel Generator Reliability and Installation Energy Security
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Report No.
NREL/TP-5C00-76553
.https://www.nrel.gov/docs/fy20osti/76553.pdf
34.
Dallmann
,
T.
,
Posada
,
F.
, and
Bandivadekar
,
A.
,
2018
, “
Costs of Emission Reduction Technologies for Diesel Engines Used in Non-Road Vehicles and Equipment
,” ICCT Working Paper 2018-10, The International Council of Clean Transportation, p.
10
.https://theicct.org/publication/costs-of-emissionreduction-technologies-for-diesel-engines-used-in-non-road-vehicles-and-equipment/
35.
Hydrogen Europe
,
2020
,
Strategic Research & Innovation Agenda, Final Draft
, Hydrogen Europe, Brussels, Belgium.
36.
Ainscough
,
C.
,
Kurtz
,
J.
,
Peters
,
M.
, and
Saur
,
G.
,
2015
,
Stationary Fuel Cell System Composite Data Products
, U.S. Department of Energy Office of Scientific and Technical Information, Golden, CO.
37.
Battelle Memorial Institute
,
2016
,
Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications
, U.S. Department of Energy, Golden Field Office, Golden, CO.
38.
Kumar
,
S.
,
Sarita
,
K.
,
Vardhan
,
A. S. S.
,
Elavarasan
,
R. M.
,
Saket
,
R. K.
, and
Das
,
N.
,
2020
, “
Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique
,”
Energies
,
13
(
21
), p.
5631
.10.3390/en13215631
39.
Soares
,
C.
,
2011
,
Microturbines: Applications for Distributed Energy Systems
,
Elsevier
, Amsterdam, The Netherlands.
40.
Naik
,
S.
,
2017
, “
Basic Aspects of Gas Turbine Heat Transfer
,”
Heat Exchangers–Design, Experiment and Simulation
, InTech, pp.
111
142
.10.5772/67323
41.
Galanti
,
L.
, and
Massardo
,
A. F.
,
2011
, “
Micro Gas Turbine Thermodynamic and Economic Analysis Up to 500 kWe Size
,”
Appl. Energy
,
88
(
12
), pp.
4795
4802
.10.1016/j.apenergy.2011.06.022
42.
Kim
,
M. J.
,
Kim
,
J. H.
, and
Kim
,
T. S.
,
2018
, “
The Effects of Internal Leakage on the Performance of a Micro Gas Turbine
,”
Appl. Energy
,
212
, pp.
175
184
.10.1016/j.apenergy.2017.12.029
43.
Verstraete
,
D.
, and
Bowkett
,
C.
,
2015
, “
Impact of Heat Transfer on the Performance of Micro Gas Turbines
,”
Appl. Energy
,
138
, pp.
445
449
.10.1016/j.apenergy.2014.10.075
44.
Malkamäki
,
M.
, Jaatinen-Värri, A., Honkatukia, J., Backman, J., and Larjola, J.,
2015
, “
A High Efficiency Microturbine Concept
,”
Proceedings of 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
ETC11
, Madrid, Spain, Mar. 23–27, pp.
1
12
.https://aerospace-europe.eu/media/books/ETC2015-263.pdf
45.
Ansaldo Energia Website
,
2023
, “
Microturbine Division
,” accessed Mar. 23, 2023, https://www.ansaldoenergia.com/business-lines/new-units/microturbines
46.
Jaatinen-Värri
,
A.
, Nerg, J., Uusitalo, A., Ghalamchi, B., Uzhegov, N., Smirnov, A., Sikanen, E., Grönman, A., Backman, J., and Malkamäki, M.,
2016
, “
Design of a 400 kW Gas Turbine Prototype
,”
ASME
Paper No. GT2016-56444. 10.1115/GT2016-56444
47.
U.S. Department of Energy
,
2021
, “
U.S. Department of Energy Combined Heat and Power and Microgrid Installation Databases
,” accessed Feb. 15, 2021, https://doe.icfwebservices.com/
48.
Stépień
,
Z.
,
2021
, “
A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges
,”
Energies
,
14
(
20
), p.
6504
.10.3390/en14206504
49.
Reynolds
,
W. C.
, and
Colonna
,
P.
,
2018
,
Thermodynamics: Fundamentals and Engineering Applications
,
Cambridge University Press
, Cambridge, UK.
50.
Sanchez
,
D.
,
2005
, “
Contributions to the Analysis of Solid Oxide Fuel Cell for –Integration Into Fuel Cell – Gas Turbine Hybrid Systems (in Spanish)
,” Ph.D. thesis,
University of Seville, Sevilla, Spain
.
51.
Napoli
,
R.
,
Gandiglio
,
M.
,
Lanzini
,
A.
, and
Santarelli
,
M.
,
2015
, “
Techno-Economic Analysis of PEMFC and SOFC micro-CHP Fuel Cell Systems for the Residential Sector
,”
Energy Build.
,
103
, pp.
131
146
.10.1016/j.enbuild.2015.06.052
52.
Caresana
,
F.
,
Pelagalli
,
L.
,
Comodi
,
G.
, and
Renzi
,
M.
,
2014
, “
Microturbogas Cogeneration Systems for Distributed Generation: Effects of Ambient Temperature on Global Performance and Components' Behaviour
,”
Appl. Energy
,
124
, pp.
17
27
.10.1016/j.apenergy.2014.02.075
53.
Nascimento
,
M. A. R.
,
Rodrigues
,
L. O.
,
Santos
,
E. D.
,
Gomes
,
E. E. B.
,
Dias
,
F. L. G.
,
Velásques
,
E. I. G.
, and
Carrillo
,
R. A. M.
,
2013
, “
Micro Gas Turbine Engine: A Review
,”
Prog. Gas Turbine Perform.
,
125
, pp.
107
141.
10.5772/54444
You do not currently have access to this content.