Abstract

Aerodynamic stability enhancement is crucial for the stable operation of supercritical carbon dioxide (SCO2) centrifugal compressors. This paper investigates the mechanism of aerodynamic instability of shrouded SCO2 compressors and accordingly proposes a new method for stability enhancement via the casing treatment in terms of shroud riblets. First, the experimentally validated computational fluid dynamic (CFD) method is employed to investigate the flow mechanism of the compressor under near-surge condition. The significant backflow phenomena within the impeller were revealed. Further analysis indicated that the imbalance of the Coriolis force and pressure gradient in blade-to-blade direction pushed the low-momentum fluid toward the shroud suction side. Additionally, higher Reynolds number resulted in thinner SCO2 boundary layer at the inlet near end-wall, increasing passage vorticity and further intensifying the aggregation of low-energy fluid on the shroud suction side. Based on the flow mechanisms, the streamwise riblets on shroud were designed to impede the migration of low-energy fluid. The CFD results revealed that under low-flow condition, riblets inhibit the formation of inducer vortices and backflow, thereby enhancing impeller aerodynamic stability and reducing the surge mass-flowrate. Further research indicated that riblets obstruct the migration of low-energy fluid toward shroud suction side, reducing the accumulation of low-energy fluid and blockage, thereby increasing the flow area and aerodynamic stability. Moreover, additional riblets wake and friction losses contributed to the deterioration of compressor performance at middle/large mass-flowrate conditions. Specifically, riblets reduced the flow area between blades at near choke mass-flowrate, leading to more pronounced shock structures and compressor earlier choke.

References

1.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.10.1016/0013-7480(68)90105-8
2.
Persichilli
,
M.
,
Kacludis
,
A.
,
Zdankiewicz
,
E.
, and
Held
,
T.
,
2012
,
Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 Can Displace Steam Ste
,
Power-Gen India & Central Asia
,
Pragati Maidan, New Delhi, India
, pp.
19
21
.
3.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
4.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Computational Fluid-Dynamic Investigation of a Centrifugal Compressor With Inlet Guide Vanes for Supercritical Carbon Dioxide Power Systems
,”
Energy
,
255
, p.
124469
.10.1016/j.energy.2022.124469
5.
Fan
,
G.
,
Chen
,
K.
,
Zheng
,
S.
,
Du
,
Y.
,
Dai
,
Y.
,
Wang
,
J.
, and
Zhao
,
P.
,
2021
, “
Design and Performance Analysis of a Supercritical CO2 Centrifugal Compressor With Variable Geometry
,”
ASME
Paper No. GT2021-59723.10.1115/GT2021-59723
6.
Pelton
,
R.
,
Jung
,
S.
,
Allison
,
T.
, and
Smith
,
N.
,
2018
, “
Design of a Wide-Range Centrifugal Compressor Stage for Supercritical CO2 Power Cycles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092602
.10.1115/1.4039835
7.
Liu
,
Z.
,
Wang
,
P.
, and
Zhao
,
B.
,
2022
, “
Numerical Investigation of the Rotating Instability Uniqueness in a MWe Scale Supercritical Carbon Dioxide Centrifugal Compressor
,”
Korean J. Chem. Eng.
,
39
(
11
), pp.
2935
2944
.10.1007/s11814-022-1213-1
8.
Wang
,
Y.
,
Shi
,
D.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2017
, “
Investigation on Unsteady Flow Characteristics of a SCO2 Centrifugal Compressor
,”
Appl. Sci.
,
7
(
4
), p.
310
.10.3390/app7040310
9.
Pelton
,
R.
,
Bygrave
,
J.
,
Wygant
,
K.
,
Wilkes
,
J.
,
Revak
,
T.
, and
Kim
,
K.
,
2022
, “
Near Critical Point Testing and Performance Results of a sCO2 Compressor for a 10MWe Brayton Cycle
,”
ASME
Paper No. GT2022-83503.10.1115/GT2022-83503
10.
Cha
,
J. E.
,
Bae
,
S. W.
,
Lee
,
J.
,
Cho
,
S. K.
,
Lee
,
J. I.
, and
Park
,
J. H.
,
2016
, “
Operation Results of a Closed Supercritical CO2 Simple Brayton Cycle
,”
Proceedings of the 5th International Symposium-Supercritical CO2 Power Cycles
,
San Antonio, TX
, Mar. 28–31, pp.
28
31
.https://sco2symposium.com/papers2016/Testing/085paper.pdf
11.
Ren
,
H.
,
Hacks
,
A.
,
Schuster
,
S.
, and
Brillert
,
D.
,
2021
, “
Mean-Line Analysis for Supercritical CO2 Centrifugal Compressors by Using Enthalpy Loss Coefficients
,”
Proceedings of 4th European Supercritical CO2 Conference
, Online Conference, Mar. 23–24, pp.
68
77
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00073771/106_Ren_et_al_Mean-line_analysis_sCO2.pdf
12.
Jeong
,
Y.
,
Kim
,
G.
,
Son
,
I. W.
,
Lee
,
S.
, and
Lee
,
J. I.
,
2023
, “
Supercritical CO2 Compressor Operation Near Stall and Surge Conditions
,”
Case Stud. Therm. Eng.
,
50
, p.
103499
.10.1016/j.csite.2023.103499
13.
Patel
,
A.
,
Diez
,
R.
, and
Pecnik
,
R.
,
2018
, “
Turbulence Modelling for Flows With Strong Variations in Thermo-Physical Properties
,”
Int. J. Heat Fluid Flow
,
73
, pp.
114
123
.10.1016/j.ijheatfluidflow.2018.07.005
14.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (
REFPROP
): Version 9.1,”
National Institute of Standards and Technology, Gaithersburg, MD
.https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
15.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Pickard
,
P. S.
, and
Rochau
,
G. E.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories (
SNL
),
Albuquerque, NM, and Livermore, CA
, Report No. SAND2010-0171.10.2172/984129
16.
Manual
,
N. U.
,
2015
, “
Fine Open User Manual
,”
Numeca International, Brussels, Belgium
.
17.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors: Design, Analysis, and Applications
,
Cambridge University Press
,
Cambridge, UK
.
18.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.10.1115/1.4029616
19.
Van den Braembussche
,
R.
,
2019
,
Design and Analysis of Centrifugal Compressors
,
Wiley
,
Hoboken, NJ
.
20.
Dean
,
R. C.
,
1974
, “
The Fluid Dynamic Design of Advanced Centrifugal Compressors
,”
Von Karman Inst. Fluid Dyn. Adv. Radial Compressors
,
99
, pp.
68
69
.
21.
Hazby
,
H. R.
, and
Xu
,
L.
, “
Role of Tip Leakage in Stall of a Transonic Centrifugal Impeller
,”
ASME
Paper No. GT2009-59372.10.1115/GT2009-59372
You do not currently have access to this content.