Abstract

The cetane number (CN) is an important fuel property to consider for compression ignition engines as it is a measure of a fuel's ignition delay. Derived cetane number (DCN) already varies significantly within jet fuels. With the expected increasing prevalence of alternative jet fuels, additional variability is expected. DCN is usually assigned to fuels using ASTM methods that use large equipment like the ignition quality tester (IQT), which consumes a lot of fuel and is cumbersome to operate. Over the last decade, there have been advances in the development of chemometric models, which use machine learning to correlate infrared spectra of fuels to fuel properties like DCN, density, and C/H ratio, among many others. These techniques have certain advantages over the ASTM methods, and previous studies performed on samples of diesel fuels have shown high accuracies in DCN prediction. However, this accuracy is generally a result of high resolution, making the equipment expensive, relatively large for handheld sensors, and power-hungry. On the other hand, nondispersive infrared (NDIR) sensors, despite having a low resolution, are attractive because they can be compact, inexpensive, and power efficient. These characteristics are important for handheld or onboard fuel sensors. However, one would anticipate a tradeoff between these advantages and accuracy. This study investigates this tradeoff and the feasibility of low-resolution NDIR sensors to discern fuel properties such as DCN by using Machine Learning models trained on real FTIR data, and DCNs obtained from IQT. DCN predictions were made for blends of ATJ/F-24, CN fuels, and neat Jet A1, A2, and JP 5, with an error limit of 10%. It was found that there seems to be sufficient variability in the near infrared (NIR) range to discern DCN with a feasible number of channels, but the channels have to be narrow (e.g., FWHMs as narrow as 60 nm). For the dataset in the study, the performance of linear models was better than the nonlinear model. Finally, NIR region beyond 1050 nm was found to be more important in DCN prediction, primarily the regions consisting of the first and second C-H overtones and the C-H combination band.

References

1.
Zhang
,
C.
,
Hui
,
X.
,
Lin
,
Y.
, and
Sung
,
C. J.
,
2016
, “
Recent Development in Studies of Alternative Jet Fuel Combustion: Progress, Challenges, and Opportunities
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
120
138
.10.1016/j.rser.2015.09.056
2.
Tomar
,
M.
,
Abraham
,
A.
,
Kim
,
K.
,
Mayhew
,
E.
,
Lee
,
T.
,
Brezinsky
,
K.
, and
Lynch
,
P.
,
2023
, “Bio-Derived Sustainable Aviation Fuels—On the Verge of Powering Our Future,”
Combustion Chemistry and the Carbon Neutral Future
, Elsevier, Amsterdam, The Netherlands, pp.
521
598
.10.1016/B978-0-323-99213-8.00013-8
3.
Dalmiya
,
A.
,
Sheyyab
,
M.
,
Mehta
,
J. M.
,
Brezinsky
,
K.
, and
Lynch
,
P. T.
,
2022
, “
Derived Cetane Number Prediction of Jet Fuels and Their Functional Group Surrogates Using Liquid Phase Infrared Absorption
,”
Proceedings of the Combustion Institute 2022
, Vancouver, BC, Canada, July 24–29, pp.
1495
1504
.10.1016/j.proci.2022.08.104
4.
Brouillette
,
C.
,
Smith
,
W.
,
Shende
,
C.
,
Gladding
,
Z.
,
Farquharson
,
S.
,
Morris
,
R. E.
,
Cramer
,
J. A.
, and
Schmitigal
,
J.
,
2016
, “
Analysis of Twenty-Two Performance Properties of Diesel, Gasoline, and Jet Fuels Using a Field-Portable Near-Infrared (NIR) Analyzer
,”
Appl. Spectrosc.
,
70
(
5
), pp.
746
755
.10.1177/0003702816638279
5.
Cooper
,
J. B.
,
Larkin
,
C. M.
,
Schmitigal
,
J.
,
Morris
,
R. E.
, and
Abdelkader
,
M. F.
,
2011
, “
Rapid Analysis of Jet Fuel Using a Handheld Near-Infrared (NIR) Analyzer
,”
Appl. Spectrosc.
,
65
(
2
), pp.
187
192
.10.1366/10-06076
6.
Swarin
,
S. J.
, and
Drumm
,
C. A.
,
1991
, “
Prediction of Gasoline Properties With Near-Infrared Spectroscopy and Chemometrics
,”
SAE Trans.
,
100
, pp.
1110
1118
.10.4271/912390
7.
Morris
,
R. E.
,
Hammond
,
M. H.
,
Cramer
,
J. A.
,
Johnson
,
K. J.
,
Giordano
,
B. C.
,
Kramer
,
K. E.
, and
Rose-Pehrsson
,
S. L.
,
2009
, “
Rapid Fuel Quality Surveillance Through Chemometric Modeling of Near-Infrared Spectra
,”
Energy Fuels
,
23
(
3
), pp.
1610
1618
.10.1021/ef800869t
8.
Westbrook
,
S. R.
,
1993
, “
Army Use of Near-Infrared Spectroscopy to Estimate Selected Properties of Compression Ignition Fuels
,”
SAE
Paper No. 930734.
9.
Lysaght
,
M. J.
,
Kelly
,
J. J.
, and
Callis
,
J. B.
,
1993
, “
Rapid Spectroscopic Determination of per Cent Aromatics, per Cent Saturates and Freezing Point of JP-4 Aviation Fuel
,”
Fuel
,
72
(
5
), pp.
623
631
.10.1016/0016-2361(93)90574-L
10.
Chung
,
H.
,
Ku
,
M. S.
, and
Lee
,
J. S.
,
1999
, “
Comparison of Near-Infrared and Mid-Infrared Spectroscopy for the Determination of Distillation Property of Kerosene
,”
Vib. Spectrosc.
,
20
(
2
), pp.
155
163
.10.1016/S0924-2031(99)00034-X
11.
Park
,
J. S.
,
Cho
,
H. C.
, and
Yi
,
S. H.
,
2010
, “
NDIR CO2 Gas Sensor With Improved Temperature Compensation
,”
Proc. Eng.
,
5
, pp.
303
306
.10.1016/j.proeng.2010.09.108
12.
Fanchenko
,
S.
,
Baranov
,
A.
,
Savkin
,
A.
, and
Sleptsov
,
V.
,
2016
, “
LED-Based NDIR Natural Gas Analyzer
,”
IOP Conference Series: Materials Science and Engineering
,
Institute of Physics Publishing
, Mykonos, Greece, Sept. 27–30, Vol.
108
.10.1088/1757-899X/108/1/012036
13.
Ye
,
W.
,
Tu
,
Z.
,
Xiao
,
X.
,
Simeone
,
A.
,
Yan
,
J.
,
Wu
,
T.
,
Wu
,
F.
,
Zheng
,
C.
, and
Tittel
,
F. K.
,
2020
, “
A NDIR Mid-Infrared Methane Sensor With a Compact Pentahedron Gas-Cell
,”
Sensors (Switzerland)
,
20
(
19
), p.
5461
.10.3390/s20195461
14.
Diharja
,
R.
,
Rivai
,
M.
,
Mujiono
,
T.
, and
Pirngadi
,
H.
,
2019
, “
Carbon Monoxide Sensor Based on Non-Dispersive Infrared Principle
,”
J. Phys. Conf. Ser.
,
1201
(
1
), p.
012012
https://iopscience.iop.org/article/10.1088/1742-6596/1201/1/012012/pdf#:~:text=Conclusion%20In%20this%20study%2C%20CO,to%20the%20CO%20gas%20absorption.
15.
Bogomolov
,
A.
,
Zabarylo
,
U.
,
Kirsanov
,
D.
,
Belikova
,
V.
,
Ageev
,
V.
,
Usenov
,
I.
,
Galyanin
,
V.
, et al.,
2017
, “
Development and Testing of an LED-Based Near-Infrared Sensor for Human Kidney Tumor Diagnostics
,”
Sensors (Switzerland)
,
17
(
8
), p.
1914
.10.3390/s17081914
16.
Liu
,
H.
,
Shi
,
Y.
, and
Wang
,
T.
,
2020
, “
Design of a Six-Gas NDIR Gas Sensor Using an Integrated Optical Gas Chamber
,”
Opt. Express
,
28
(
8
), p.
11451
.10.1364/OE.388713
17.
Yin
,
Z.
,
Lei
,
T.
,
Yan
,
Q.
,
Chen
,
Z.
, and
Dong
,
Y.
,
2013
, “
A Near-Infrared Reflectance Sensor for Soil Surface Moisture Measurement
,”
Comput. Electron. Agric.
,
99
, pp.
101
107
.10.1016/j.compag.2013.08.029
18.
Sutar
,
A.
,
Dalmiya
,
A.
,
Sheyyab
,
M.
,
Wang
,
W.
,
Brezinsky
,
K.
, and
Lynch
,
P. T.
,
2022
, “
Optimal Channel Selection for Derived Cetane Number Prediction in Non-Dispersive Near and Short-Wave IR Sensors
,”
2022 Spring Technical Meeting of the Eastern States Section of the Combustion Institute
, Detroit, MI, May
15
17
.
19.
Edwards
,
T.
, “
Reference Jet Fuel Selection and Properties
,” Fuel Effects on Operability of Aircraft Gas Turbine Combustors, pp.
67
114
.
20.
Mehta
,
J. M.
,
Lynch
,
P. T.
,
Mayhew
,
E.
, and
Brezinsky
,
K.
,
2023
, “
Evaluation of Chemical Functional Group Composition of Jet Fuels Using Two-Dimensional Gas Chromatography
,”
Energy Fuels
,
37
(
3
), pp.
2294
2306
.10.1021/acs.energyfuels.2c03514
21.
Lukovic
,
M.
,
Lukovic
,
V.
,
Belca
,
I.
,
Kasalica
,
B.
,
Stanimirovic
,
I.
, and
Vicic
,
M.
,
2016
, “
LED-Based Vis-NIR Spectrally Tunable Light Source - the Optimization Algorithm
,”
J. Eur. Opt. Soc.
,
12
, pp.
1
12
.10.1186/s41476-016-0021-9
22.
Chen
,
H.-W.
,
Zhu
,
R.-D.
,
He
,
J.
,
Duan
,
W.
,
Hu
,
W.
,
Lu
,
Y.-Q.
,
Li
,
M.-C.
,
Lee
,
S.-L.
,
Dong
,
Y.-J.
, and
Wu
,
S.-T.
,
2017
, “
Going Beyond the Limit of an LCD's Color Gamut
,”
Light Sci Appl
,
6
(
9
), pp.
e17043
e17043
.10.1038/lsa.2017.43
23.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al.,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.10.1038/s41586-020-2649-2
24.
An
,
G.
, “
The Effects of Adding Noise During Backpropagation Training on a Generalization Performance
,”
Neural Comput.
,
8
(
3
), pp.
643
674
.10.1162/neco.1996.8.3.643
25.
Moghimi
,
A.
,
Yang
,
C.
, and
Marchetto
,
P. M.
,
2018
, “
Ensemble Feature Selection for Plant Phenotyping: A Journey From Hyperspectral to Multispectral Imaging
,”
IEEE Access
,
6
, pp.
56870
56884
.10.1109/ACCESS.2018.2872801
26.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
, et al., 2011, “
Scikit-Learn: Machine Learning in Python
,”
J. Machine Learn. Res.
, 12(85), pp.
2825
2830
.https://www.jmlr.org/papers/v12/pedregosa11a.html
27.
Raschka
,
S.
,
2018
, “
MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python's Scientific Computing Stack
,”
J. Open Source Software
,
3
(
24
), p.
638
.10.21105/joss.00638
28.
Ali
,
J.
,
Khan
,
R.
,
Ahmad
,
N.
, and
Maqsood
,
I.
,
2012
, “
Random Forests and Decision Trees
,”
IJCSI Int. J. Comput. Sci. Issues
,
9
(
5
), pp.
272
278
.https://www.uetpeshawar.edu.pk/TRP-G/Dr.Nasir-Ahmad-TRP/Journals/2012/Random%20Forests%20and%20Decision%20Trees.pdf
29.
Ranganathan
,
G.
,
Fernando
,
X.
,
Shi
,
F.
, and
Allioui
,
Y. E.
,
2022
, “
Soft Computing for Security Applications
,”
Proceedings of ICSCS 2021
, Noida, India, Nov.
25
27
.https://link.springer.com/book/10.1007/978-981-16-5301-8
You do not currently have access to this content.