Abstract

To understand the effect of n-heptane (NC7H16) addition on the auto-ignition of methane (CH4) at low to intermediate temperatures, the ignition delay times (IDTs) of stoichiometric CH4/NC7H16 blends with varying NC7H16 concentrations were measured at temperatures from 600 to 1000 K, pressures of 20 and 40 bar. Detailed chemical kinetic mechanisms were validated against the newly measured IDTs. Adding NC7H16 in the binary mixture shows a nonlinear promoting effect on the IDTs: micro-addition of NC7H16 can significantly reduce the IDTs of the binary mixture when the NC7H16 is lower than 20%. However, the decrease of the IDTs becomes much slower when further increasing the NC7H16 addition. Affected by the negative temperature coefficient (NTC) behavior of NC7H16, this nonlinear effect is particularly notable at around 795 K, the low boundary of the NTC region. To reveal the nonlinear reactivity-promoting effect of NC7H16 addition on the binary mixture, reaction flux, ignition sensitivity, rate of production of the key radicals along heat production analyses were conducted. Apart from contributing more O˙H production through the low-temperature chain-branching reaction pathways of NC7H16, adding NC7H16 also promotes the pre-ignition heat release of the binary mixture. The heat release raises the system temperature and further promotes the mixture ignition, enhancing the nonlinear effect at low temperatures.

References

1.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.10.1016/j.pecs.2014.05.003
2.
Bae
,
C.
, and
Kim
,
J.
,
2017
, “
Alternative Fuels for Internal Combustion Engines
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3389
3413
.10.1016/j.proci.2016.09.009
3.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
89
112
.10.1016/j.pecs.2010.04.002
4.
Wei
,
L.
, and
Geng
,
P.
,
2016
, “
A Review on Natural Gas/Diesel Dual Fuel Combustion, Emissions and Performance
,”
Fuel Process. Technol.
,
142
, pp.
264
278
.10.1016/j.fuproc.2015.09.018
5.
Huang
,
H.
,
Lv
,
D.
,
Zhu
,
J.
,
Zhu
,
Z.
,
Chen
,
Y.
,
Pan
,
Y.
, and
Pan
,
M.
,
2019
, “
Development of a New Reduced Diesel/Natural Gas Mechanism for Dual-Fuel Engine Combustion and Emission Prediction
,”
Fuel
,
236
, pp.
30
42
.10.1016/j.fuel.2018.08.161
6.
Chen
,
Y. J.
,
Zhu
,
Z.
,
Chen
,
Y. J.
,
Huang
,
H. Z.
,
Zhu
,
Z. J.
,
Lv
,
D. L.
,
Pan
,
M. Z.
, and
Guo
,
X. Y.
,
2020
, “
Study of Injection Pressure Couple With EGR on Combustion Performance and Emissions of Natural Gas-Diesel Dual-Fuel Engine
,”
Fuel
,
261
, p.
116409
.10.1016/j.fuel.2019.116409
7.
Akansu
,
S.
,
2004
, “
Internal Combustion Engines Fueled by Natural Gas-Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
29
(
14
), pp.
1527
1539
.10.1016/j.ijhydene.2004.01.018
8.
Papagiannakis
,
R. G.
,
Rakopoulos
,
C. D.
,
Hountalas
,
D. T.
, and
Rakopoulos
,
D. C.
,
2010
, “
Emission Characteristics of High Speed, Dual Fuel, Compression Ignition Engine Operating in a Wide Range of Natural Gas/Diesel Fuel Proportions
,”
Fuel
,
89
(
7
), pp.
1397
1406
.10.1016/j.fuel.2009.11.001
9.
Chiara
,
F.
, and
Canova
,
M.
,
2009
, “
Mixed-Mode Homogeneous Charge Compression Ignition—Direct Injection Combustion on Common Rail Diesel Engines: An Experimental Characterization
,”
Int. J. Energy Res.
,
10
(
2
), pp.
81
96
.10.1243/14680874JER02609
10.
Rapp
,
V. H.
,
Cannella
,
W. J.
,
Chen
,
J. Y.
, and
Dibble
,
R. W.
,
2013
, “
Predicting Fuel Performance for Future HCCI Engines
,”
Combust. Sci. Technol.
,
185
(
5
), pp.
735
748
.10.1080/00102202.2012.750309
11.
d'Ambrosio
,
S.
, and
Ferrari
,
A.
,
2015
, “
Effects of Exhaust Gas Recirculation in Diesel Engines Featuring Late PCCI Type Combustion Strategies
,”
Energy Convers. Manag.
,
105
, pp.
1269
1280
.10.1016/j.enconman.2015.08.001
12.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2014
, “
Effect of Compressed Natural Gas Dual Fuel Operation With Diesel and Pongamia Pinnata Methyl Ester (PPME) as Pilot Fuels on Performance and Emission Characteristics of a CI (Compression Ignition) Engine
,”
Energy
,
68
, pp.
495
509
.10.1016/j.energy.2014.03.026
13.
Srna
,
A.
,
Bolla
,
M.
,
Wright
,
Y. M.
,
Herrmann
,
K.
,
Bombach
,
R.
,
Pandurangi
,
S. S.
,
Boulouchos
,
K.
, and
Bruneaux
,
G.
,
2019
, “
Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4741
4749
.10.1016/j.proci.2018.06.177
14.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
.10.1016/j.pecs.2011.03.003
15.
Musculus
,
M. P. B.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.10.1016/j.pecs.2012.09.001
16.
Li
,
M.
,
Zhang
,
Q.
,
Liu
,
X.
,
Ma
,
Y.
, and
Zheng
,
Q.
,
2018
, “
Soot Emission Prediction in Pilot Ignited Direct Injection Natural Gas Engine Based on n-Heptane/Toluene/Methane/PAH Mechanism
,”
Energy
,
163
, pp.
660
681
.10.1016/j.energy.2018.08.102
17.
Petersen
,
E. L.
,
Hall
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A. R.
, and
Crofton
,
M. W.
,
2007
, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
937
944
.10.1115/1.2720543
18.
Herzler
,
J.
,
Jerig
,
L.
, and
Roth
,
P.
,
2005
, “
Shock Tube Study of the Ignition of Lean n-Heptane/Air Mixtures at Intermediate Temperatures and High Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1147
1153
.10.1016/j.proci.2004.07.008
19.
Sanli
,
A.
,
Yılmaz
,
I. T.
, and
Gümüş
,
M.
,
2020
, “
Assessment of Combustion and Exhaust Emissions in a Common-Rail Diesel Engine Fueled With Methane and Hydrogen/Methane Mixtures Under Different Compression Ratio
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3263
3283
.10.1016/j.ijhydene.2019.11.222
20.
Jha
,
P. R.
,
Wijeyakulasuriya
,
S.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2022
, “
Numerical Investigations of Low Load Diesel-Methane Dual Fuel Combustion at Early Diesel Injection Timings
,”
Fuel
,
315
, p.
123077
.10.1016/j.fuel.2021.123077
21.
Hockett
,
A.
,
Hampson
,
G.
, and
Marchese
,
A. J.
,
2016
, “
Development and Validation of a Reduced Chemical Kinetic Mechanism for Computational Fluid Dynamics Simulations of Natural Gas/Diesel Dual-Fuel Engines
,”
Energy Fuels
,
30
(
3
), pp.
2414
2427
.10.1021/acs.energyfuels.5b02655
22.
Li
,
Y.
,
Li
,
H.
,
Guo
,
H.
,
Li
,
Y.
, and
Yao
,
M.
,
2017
, “
A Numerical Investigation on Methane Combustion and Emissions From a Natural Gas-Diesel Dual Fuel Engine Using CFD Model
,”
Appl. Energy
,
205
, pp.
153
162
.10.1016/j.apenergy.2017.07.071
23.
Huang
,
J.
,
Hill
,
P. G.
,
Bushe
,
W. K.
, and
Munshi
,
S. R.
,
2004
, “
Shock-Tube Study of Methane Ignition Under Engine-Relevant Conditions: Experiments and Modeling
,”
Combust. Flame
,
136
(
1–2
), pp.
25
42
.10.1016/j.combustflame.2003.09.002
24.
Burke
,
U.
,
Somers
,
K. P.
,
O'Toole
,
P.
,
Zinner
,
C. M.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E. L.
,
Metcalfe
,
W. K.
,
Serinyel
,
Z.
, and
Curran
,
H. J.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.10.1016/j.combustflame.2014.08.014
25.
El-Sabor Mohamed
,
A. A.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2021
, “
An Experimental and Kinetic Modeling Study of the Auto-Ignition of Natural Gas Blends Containing C1–C7 Alkanes
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
365
373
.10.1016/j.proci.2020.06.015
26.
Zhang
,
K.
,
Banyon
,
C.
,
Bugler
,
J.
,
Curran
,
H. J.
,
Rodriguez
,
A.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
,
B'Chir
,
C.
, and
Heufer
,
K. A.
,
2016
, “
An Updated Experimental and Kinetic Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
172
, pp.
116
135
.10.1016/j.combustflame.2016.06.028
27.
Yu
,
L.
,
Wang
,
S.
,
Wang
,
W.
,
Qiu
,
Y.
,
Qian
,
Y.
,
Mao
,
Y.
, and
Lu
,
X.
,
2019
, “
Exploration of Chemical Composition Effects on the Autoignition of Two Commercial Diesels: Rapid Compression Machine Experiments and Model Simulation
,”
Combust. Flame
,
204
, pp.
204
219
.10.1016/j.combustflame.2019.03.007
28.
Liang
,
J.
,
Zhang
,
Z.
,
Li
,
G.
,
Wan
,
Q.
,
Xu
,
L.
, and
Fan
,
S.
,
2019
, “
Experimental and Kinetic Studies of Ignition Processes of the Methane–n-Heptane Mixtures
,”
Fuel
,
235
, pp.
522
529
.10.1016/j.fuel.2018.08.041
29.
Schuh
,
S.
,
Ramalingam
,
A. K.
,
Minwegen
,
H.
,
Heufer
,
K. A.
, and
Winter
,
F.
,
2019
, “
Experimental Investigation and Benchmark Study of Oxidation of Methane–Propane–n-Heptane Mixtures at Pressures Up to 100 Bar
,”
Energies
,
12
(
18
), p.
3410
.10.3390/en12183410
30.
Gong
,
Z.
,
Feng
,
L.
,
Qu
,
W.
,
Li
,
L.
, and
Wei
,
L.
,
2020
, “
Auto-Ignition Characteristics of Methane/n-Heptane Mixtures Under Carbon Dioxide and Water Dilution Conditions
,”
Appl. Energy
,
278
, p.
115639
.10.1016/j.apenergy.2020.115639
31.
Zhu
,
J.
,
Li
,
J.
,
Wang
,
S.
,
Raza
,
M.
,
Qian
,
Y.
,
Feng
,
Y.
,
Yu
,
L.
,
Mao
,
Y.
, and
Lu
,
X.
,
2021
, “
Ignition Delay Time Measurements and Kinetic Modeling of Methane/Diesel Mixtures at Elevated Pressures
,”
Combust. Flame
,
229
, p.
111390
.10.1016/j.combustflame.2021.02.036
32.
Wu
,
Y. T.
,
Yang
,
M.
,
Tang
,
C. L.
,
Liu
,
Y.
,
Zhang
,
P.
, and
Huang
,
Z. H.
,
2019
, “
Promoting “Adiabatic Core” Approximation in a Rapid Compression Machine by an Optimized Creviced Piston Design
,”
Fuel
,
251
, pp.
328
340
.10.1016/j.fuel.2019.04.030
33.
Liu
,
Y.
,
Tang
,
C. L.
,
Zhan
,
C.
,
Wu
,
Y. T.
,
Yang
,
M.
, and
Huang
,
Z. H.
,
2019
, “
Low Temperature Auto-Ignition Characteristics of Methylcyclohexane/Ethanol Blend Fuels: Ignition Delay Time Measurement and Kinetic Analysis
,”
Energy
,
177
, pp.
465
475
.10.1016/j.energy.2019.04.132
34.
Yang
,
M.
,
Yang
,
Y.
,
Liao
,
C.
,
Tang
,
C.
,
Zhou
,
C.-W.
, and
Huang
,
Z.
,
2020
, “
The Auto-Ignition Boundary of Ethylene/Nitrous Oxide as a Promising Monopropellant
,”
Combust. Flame
,
221
, pp.
64
73
.10.1016/j.combustflame.2020.07.024
35.
Mittal
,
G.
, and
Sung
,
C. J.
,
2007
, “
A Rapid Compression Machine for Chemical Kinetics Studies at Elevated Pressures and Temperatures
,”
Combust. Sci. Technol.
,
179
(
3
), pp.
497
530
.10.1080/00102200600671898
36.
Weber
,
B. W.
,
Sung
,
C.-J.
, and
Renfro
,
M. W.
,
2015
, “
On the Uncertainty of Temperature Estimation in a Rapid Compression Machine
,”
Combust. Flame
,
162
(
6
), pp.
2518
2528
.10.1016/j.combustflame.2015.03.001
37.
Sung
,
C. J.
, and
Curran
,
H. J.
,
2014
, “
Using Rapid Compression Machines for Chemical Kinetics Studies
,”
Prog. Energy Combust. Sci.
,
44
, pp.
1
18
.10.1016/j.pecs.2014.04.001
38.
ANSYS, Inc.
, 2023,
ANSYS CHEMKIN-Pro® Academic Research, Release 18.2
,
ANSYS, Inc.
, Canonsburg, PA.
39.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.10.1016/j.proci.2010.05.027
40.
Wu
,
Y.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bariki
,
C.
,
Beeckmann
,
J.
,
Liang
,
J.
,
Mohamed
,
A. A. E.
,
Dong
,
S.
,
Tang
,
C.
,
Pitsch
,
H.
,
Huang
,
Z.
, and
Curran
,
H. J.
,
2021
, “
Understanding the Antagonistic Effect of Methanol as a Component in Surrogate Fuel Models: A Case Study of Methanol/n-Heptane Mixtures
,”
Combust. Flame
,
226
, pp.
229
242
.10.1016/j.combustflame.2020.12.006
41.
Loparo
,
Z. E.
,
Lopez
,
J. G.
,
Neupane
,
S.
,
Partridge
,
W. P.
,
Vodopyanov
,
K.
, and
Vasu
,
S. S.
,
2017
, “
Fuel-Rich n-Heptane Oxidation: A Shock Tube and Laser Absorption Study
,”
Combust. Flame
,
185
, pp.
220
233
.10.1016/j.combustflame.2017.07.016
42.
Gong
,
Z.
,
Feng
,
L. Y.
,
Wei
,
L.
,
Qu
,
W. J.
, and
Li
,
L. C.
,
2020
, “
Shock Tube and Kinetic Study on Ignition Characteristics of Lean Methane/n-Heptane Mixtures at Low and Elevated Pressures
,”
Energy
,
197
, p.
117242
.10.1016/j.energy.2020.117242
43.
Molana
,
M.
,
Goyal
,
T.
, and
Samimi-Abianeh
,
O.
,
2021
, “
Measurement and Simulation of n-Heptane Mixture Autoignition
,”
Ind. Eng. Chem. Res.
,
60
(
38
), pp.
13859
13868
.10.1021/acs.iecr.1c02943
44.
Zhang
,
Z.
,
Zhao
,
H.
,
Cao
,
L.
,
Li
,
G.
, and
Ju
,
Y.
,
2018
, “
Kinetic Effects of n-Heptane Addition on Low and High Temperature Oxidation of Methane in a Jet-Stirred Reactor
,”
Energy Fuels
,
32
(
11
), pp.
11970
11978
.10.1021/acs.energyfuels.8b03124
45.
Song
,
C.
,
Liang
,
J.
,
Zhang
,
Z.
,
Li
,
G.
, and
Zhang
,
C.
,
2022
, “
Interpretation of Role of Methane in Low-Temperature Oxidation Processes of Methane/n-Heptane Mixtures
,”
Fuel
,
328
, p.
125373
.10.1016/j.fuel.2022.125373
46.
Thorsen
,
L. S.
,
Thestrup Jensen
,
M. S.
,
Pullich
,
M. S.
,
Christensen
,
J. M.
,
Hashemi
,
H.
, and
Glarborg
,
P.
,
2023
, “
Oxidation of Methane/n-Heptane Mixtures in a High-Pressure Flow Reactor
,”
Energy Fuels
,
37
(
4
), pp.
3048
3055
.10.1021/acs.energyfuels.2c03542
47.
Kaczmarek
,
D.
,
Atakan
,
B.
, and
Kasper
,
T.
,
2019
, “
Investigation of the Partial Oxidation of Methane/n-Heptane-Mixtures and the Interaction of Methane and n-Heptane Under Ultra-Rich Conditions
,”
Combust. Flame
,
205
, pp.
345
357
.10.1016/j.combustflame.2019.04.005
48.
Huang
,
J.
, and
Bushe
,
W. K.
,
2006
, “
Experimental and Kinetic Study of Autoignition in Methane/Ethane/Air and Methane/Propane/Air Mixtures Under Engine-Relevant Conditions
,”
Combust. Flame
,
144
(
1–2
), pp.
74
88
.10.1016/j.combustflame.2005.06.013
49.
Uygun
,
Y.
,
Ishihara
,
S.
, and
Olivier
,
H.
,
2014
, “
A High Pressure Ignition Delay Time Study of 2-Methylfuran and Tetrahydrofuran in Shock Tubes
,”
Combust. Flame
,
161
(
10
), pp.
2519
2530
.10.1016/j.combustflame.2014.04.004
50.
Zhang
,
P.
,
Zsély
,
I. G.
,
Samu
,
V.
,
Nagy
,
T.
, and
Turányi
,
T.
,
2021
, “
Comparison of Methane Combustion Mechanisms Using Shock Tube and Rapid Compression Machine Ignition Delay Time Measurements
,”
Energy Fuels
,
35
(
15
), pp.
12329
12351
.10.1021/acs.energyfuels.0c04277
51.
Ramalingam
,
A.
,
Zhang
,
K.
,
Dhongde
,
A.
,
Virnich
,
L.
,
Sankhla
,
H.
,
Curran
,
H.
, and
Heufer
,
A.
,
2017
, “
An RCM Experimental and Modeling Study on CH4 and CH4/C2H6 Oxidation at Pressures Up to 160 Bar
,”
Fuel
,
206
, pp.
325
333
.10.1016/j.fuel.2017.06.005
52.
Lightfoot
,
P. D.
,
Roussel
,
P.
,
Caralp
,
F.
, and
Lesclaux
,
R.
,
1991
, “
Flash Photolysis Study of the CH3O2+ CH3O2 and CH3O2+ HO2 Reactions Between 600 and 719 K: Unimolecular Decomposition of Methylhydroperoxide
,”
J. Chem. Soc. Faraday Trans.
,
87
(
19
), p.
3213
.10.1039/ft9918703213
53.
Anglada
,
J. M.
,
Olivella
,
S.
, and
Sole
,
A.
,
2006
, “
Mechanistic Study of the CH(3)O(2)(*) + HO(2)(*) –> CH(3)O(2)H + O(2) Reaction in the Gas Phase. computational Evidence for the Formation of a Hydrogen-Bonded Diradical Complex
,”
J. Phys. Chem. A
,
110
(
18
), pp.
6073
6082
.10.1021/jp060798u
54.
Tsang
,
W.
, and
Hampson
,
R. F.
,
1986
, “
Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
1087
1279
.10.1063/1.555759
55.
Westbrook
,
C. K.
,
2000
, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1563
1577
.10.1016/S0082-0784(00)80554-8
You do not currently have access to this content.