Abstract

This study aims to illustrate a sequence that optimizes the flight-path trajectory for a hybrid-electric aircraft at mission level, in addition to identifying the respective optimum power management strategy. An in-house framework for hybrid-electric propulsion system modeling is utilized. A hybrid-electric commuter aircraft serves as a virtual test-bench. Vectorized calculations, decision variable count, and optimization algorithms are considered for reducing the computational time of the framework. Performance improvements are evaluated for the aircraft's design mission profile. Total energy consumption is set as the objective function. Emphasis lies on minimizing the average value and standard deviation of the energy consumption and timeframe metrics. The best performing application decreases computational time by two orders of magnitude, while retaining equal accuracy and consistency as the original model. It is employed for creating a dataset for training an artificial neural network (ANN) against random mission patterns. The trained network is integrated into a surrogate model. The latter part of the analysis evaluates optimized mission profile characteristics with respect to energy consumption, against a benchmark flight-path. The combined optimization process decreases the multihour-scale timeframe by two orders of magnitude to a 3-min sequence. Using the novel framework, a 12% average energy consumption benefit is calculated for short, medium, and long regional missions, against equivalent benchmark profiles.

References

1.
United States Federal Aviation Authority, 2021, “Aviation Climate Action Plan,” United States Federal Aviation Authority, accessed Sept. 13, 2022, https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
2.
Darecki
,
M.
,
King
,
I.
,
Edelstenne
,
C.
,
Ky
,
P.
,
Enders
,
T.
,
Mathieu
,
M.
,
Fernandez
,
E.
,
Orsi
,
G.
,
Hartman
,
P.
,
Schotman
,
G.
,
Hertman
,
J.-P.
,
Smith
,
C.
,
Kerkloh
,
M.
, and
Worner
,
J.-D.
,
2011
,
Flightpath 2050—Europe's Vision for Aviation Report of the High-Level Group on Aviation Research
,
Publications Office of the European Union
,
Luxembourg
.
3.
Chiaramonti
,
D.
,
2019
, “
Sustainable Aviation Fuels: The Challenge of Decarbonization
,”
Energy Procedia
,
158
, pp.
1202
1207
.10.1016/j.egypro.2019.01.308
4.
Kurzawska
,
P.
,
2021
, “
Overview of Sustainable Aviation Fuels Including Emission of Particulate Matter and Harmful Gaseous Exhaust Gas Compounds
,”
Transp. Res. Procedia
,
59
, pp.
38
45
.10.1016/j.trpro.2021.11.095
5.
Hoelzen
,
J.
,
Silberhorn
,
D.
,
Zill
,
T.
,
Bensmann
,
B.
, and
Hanke-Rauschenbach
,
R.
,
2022
, “
Hydrogen-Powered Aviation and Its Reliance on Green Hydrogen Infrastructure—Review and Research Gaps
,”
Int. J. Hydrogen Energy
,
47
(
5
), pp.
3108
3130
.10.1016/j.ijhydene.2021.10.239
6.
Petrescu
,
R. V. V.
,
Machin
,
A.
,
Fontanez
,
K.
,
Arango
,
J. C.
,
Marquez
,
F. M.
, and
Petrescu
,
F. I. T.
,
2020
, “
Hydrogen for Aircraft Power and Propulsion
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
20740
20764
.10.1016/j.ijhydene.2020.05.253
7.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA
Paper No.
2017
4701
.10.2514/6.2017-4701
8.
Brelje
,
B. J.
, and
Martins
,
J. R.
,
2019
, “
Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches
,”
Prog. Aerosp. Sci.
,
104
, pp.
1
19
.10.1016/j.paerosci.2018.06.004
9.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
10.
Finger
,
D. F.
,
Braun
,
C.
, and
Bil
,
C.
,
2018
, “
Case Studies in Initial Sizing for Hybrid-Electric General Aviation Aircraft
,”
AIAA
Paper No. 2018-5005.10.2514/6.2018-5005
11.
Hofmann
,
J.-P.
,
Stumpf
,
E.
,
Weintraub
,
D.
,
Koehler
,
J.
,
Pham
,
D.
,
Schneider
,
M.
,
Dickhoff
,
J.
,
Burkhart
,
B.
,
Reiner
,
G.
,
Spiller
,
M.
, and
Werner
,
E. A.
,
2019
, “
A Comprehensive Approach to the Assessment of a Hybrid Electric Powertrain for Commuter Aircraft
,”
AIAA
Paper No. 2019-3678.10.2514/6.2019-3678
12.
Fefermann
,
Y.
,
Maury
,
C.
,
Level
,
C.
,
Zarati
,
K.
,
Salanne
,
J.-P.
,
Pornet
,
C.
,
Thoraval
,
B.
, and
Isikveren
,
A. T.
,
2016
, “
Hybrid-Electric Motive Power Systems for Commuter Transport Applications
,”
30th Congress of the International Council of the Aeronautical Sciences
,
Daejeon, South Korea
, Sept. 25–30.https://www.researchgate.net/publication/308722662_Hybrid-Electric_Motive_Power_Systems_for_Commuter_Transport_Applications
13.
Antcliff
,
K. R.
, and
Capristan
,
F. M.
,
2017
, “
Conceptual Design of the Parallel Electric-Gas Architecture With Synergistic Utilization Scheme (PEGASUS) Concept
,”
AIAA
Paper No. 2017-4001.10.2514/6.2017-4001
14.
Voskuijl
,
M.
,
van Bogaer
,
J.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CAES Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
15.
Cameretti
,
M. C.
,
Del Pizzo
,
A.
,
Di Noia
,
L. P.
,
Ferrara
,
M.
, and
Pascarella
,
C.
,
2018
, “
Modeling and Investigation of a Turboprop Hybrid Electric Propulsion System
,”
Aerospace
,
5
(
4
), p.
123
.10.3390/aerospace5040123
16.
Lammen
,
W.
, and
Vankan
,
J.
,
2020
, “
Energy Optimization of Single Aisle Aircraft With Hybrid Electric Propulsion
,”
AIAA
Paper No. 2020-0505.10.2514/6.2020-0505
17.
Pornet
,
C.
,
Kaiser
,
S.
, and
Gologan
,
C.
,
2014
, “
Cost-Based Flight Technique Optimization for Hybrid Energy Aircraft
,”
Aircr. Eng. Aerosp. Technol.
,
86
(
6
), pp.
591
598
.10.1108/AEAT-05-2014-0075
18.
Ye
,
X.
,
Savvaris
,
A.
,
Tsourdos
,
A.
,
Zhang
,
D.
, and
Gu
,
J.
,
2021
, “
Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
432
450
.10.1016/j.cja.2020.07.017
19.
Papadopoulos
,
K. I.
,
Nasoulis
,
C. P.
,
Ntouvelos
,
E. G.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Power Flow Optimization for a Hybrid-Electric Propulsion System
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111013
.10.1115/1.4055478
20.
Antcliff
,
K. R.
,
Guynn
,
M. D.
,
Marien
,
T. V.
,
Wells
,
D. P.
,
Schneider
,
S. J.
, and
Tong
,
M. T.
,
2016
, “
Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft
,”
AIAA
Paper No. 2016-1028.10.2514/6.2016-1028
21.
Dean
,
T. S.
,
Wroblewski
,
G. E.
, and
Ansell
,
P. J.
,
2018
, “
Mission Analysis and Component-Level Sensitivity Study of Hybrid-Electric General-Aviation Propulsion Systems
,”
AIAA
Paper No. 2018-1749.10.2514/6.2018-1749
22.
Schneider
,
M.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Visser
,
W.
,
Stumpf
,
E.
,
Hofmann
,
J.-P.
, and
Bohn
,
D.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft
,”
ASME
Paper No. GT2019-92065.10.1115/GT2019-92065
23.
Perullo
,
C.
, and
Mavris
,
D.
,
2014
, “
A Review of Hybrid-Electric Energy Management and Its Inclusion in Vehicle Sizing
,”
Aircr. Eng. Aerosp. Technol.
,
86
(
6
), pp.
550
557
.10.1108/AEAT-04-2014-0041
24.
Bai
,
M.
,
Yang
,
W.
,
Song
,
D.
,
Kosuda
,
M.
,
Szabo
,
S.
,
Lipovsky
,
P.
, and
Kasaei
,
A.
,
2020
, “
Research on Energy Management of Hybrid Unmanned Aerial Vehicles to Improve Energy-Saving and Emission Reduction Performance
,”
Int. J. Environ. Res. Public Health
,
17
(
8
), p.
2917
.10.3390/ijerph17082917
25.
Doff-Sotta
,
M.
,
Cannon
,
M.
, and
Bacic
,
M.
,
2020
, “
Optimal Energy Management for Hybrid Electric Aircraft
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
6043
6049
.10.1016/j.ifacol.2020.12.1672
26.
Savvaris
,
A.
,
Xie
,
Y.
,
Wang
,
L.
,
Wang
,
S.
, and
Tsourdos
,
A.
,
2018
, “
Control and Optimisation of Hybrid Electric Propulsion System for Light Aircraft
,”
J. Eng.
,
2018
(
13
), pp.
478
483
.10.1049/joe.2018.0013
27.
Moore
,
M. D.
, and
Fredericks
,
B.
,
2014
, “
Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Market
,”
AIAA
Paper No. 2014-0535.10.2514/6.2014-0535
28.
Schmidt
,
M.
,
2017
, “
A Review of Aircraft Turnaround Operations and Simulations
,”
Prog. Aerosp. Sci.
,
92
, pp.
25
38
.10.1016/j.paerosci.2017.05.002
29.
Ombach
,
J.
,
2014
, “
A Short Introduction to Stochastic Optimization
,”
Schedae Informaticae
,
23
, pp.
9
20
.10.4467/20838476SI.14.001.3018
30.
Collet
,
P.
, and
Rennard
,
J.-P.
,
2006
, “
Stochastic Optimization Algorithms
,”
Handbook of Research on Nature Inspired Computing for Economics and Management
,
IGR
, Hershey, PA.
31.
Francisco
,
M.
,
Revollar
,
S.
,
Vega
,
P.
, and
Lamanna
,
R.
,
2005
, “
A Comparative Study of Deterministic and Stochastic Optimization Methods for Integrated Design Processes
,”
IFAC Proc.
,
38
(
1
), pp.
335
340
.10.3182/20050703-6-CZ-1902.00917
32.
Wetter
,
M.
, and
Wright
,
J.
,
2003
, “
Comparison of a Generalized Pattern Search and a Genetic Algorithm Optimization Method
,”
Proceedings of the Eighth International IBPSA Conference
,
Eindhoven
,
The Netherlands
, Aug. 11–14, pp.
1401
1408
.https://www.researchgate.net/publication/253104586_Comparison_of_a_generalized_pattern_search_and_a_genetic_algorithm_optimization_method
33.
Rudolph
,
G.
,
1994
, “
Convergence Analysis of Canonical Genetic Algorithms
,”
IEEE Trans. Neural Networks
,
5
(
1
), pp.
96
101
.10.1109/72.265964
34.
Kennedy
,
J.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN '95
,
Perth, WA, Australia
, Nov. 27–Dec. 1, pp.
1942
1948
.https://en.wikipedia.org/wiki/Particle_swarm_optimization
35.
Leboucher
,
C.
,
Shin
,
H.-S.
,
Siarry
,
P. L.
,
Menec
,
S.
,
Chelouah
,
R.
, and
Tsourdos
,
A.
,
2016
, “
Convergence Proof of an Enhanced Particle Swarm Optimisation Method Integrated With Evolutionary Game Theory
,”
Inf. Sci.
,
346–347
, pp.
389
411
.10.1016/j.ins.2016.01.011
36.
Yuce
,
B.
,
Packianather
,
M. S.
,
Mastrocinque
,
E.
,
Pham
,
D. T.
, and
Lambiase
,
A.
,
2013
, “
Honey Bees Inspired Optimization Method: The Bees Algorithm
,”
Insects
,
4
(
4
), pp.
646
662
.10.3390/insects4040646
37.
Liu
,
D. C.
, and
Nocedal
,
J.
,
1989
, “
On the Limited Memory BFGS Method for Large Scale Optimization
,”
Math. Program.
,
45
(
1–3
), pp.
503
528
.10.1007/BF01589116
38.
Boggs
,
P.
, and
Tolle
,
J.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numer.
,
4
, pp.
1
51
.10.1017/S0962492900002518
39.
Han
,
S.-H.
,
Kim
,
K. W.
,
Kim
,
S.
, and
Youn
,
Y. C.
,
2018
, “
Artificial Neural Network: Understanding the Basic Concepts Without Mathematics
,”
Dementia Neurocognitive Disorders
,
17
(
3
), pp.
83
89
.10.12779/dnd.2018.17.3.83
40.
Kalogirou
,
S.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
373
401
.10.1016/S1364-0321(01)00006-5
41.
Gkoutzamanis
,
V. G.
,
Kavvalos
,
M. D.
,
Srinivas
,
A.
,
Mavroudi
,
D.
,
Korbetis
,
G.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A. I.
,
2021
, “
Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091019
.10.1115/1.4050870
42.
Nasoulis
,
C. P.
,
Protopapadakis
,
G.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2021
, “
The Impact of Propulsive Architecture on the Design of a 19-Passenger Hybrid-Electric Aircraft
,”
International Conference on Innovation in Aviation & Space to the Satisfaction of the European Citizens
,
Salerno, Italy
, Sept. 1–3, p.
1226
.10.1088/1757-899X/1226/1/012074
43.
Nasoulis
,
C. P.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Multidisciplinary Conceptual Design for a Hybrid-Electric Commuter Aircraft
,”
Aeronaut. J.
,
126
(
1302
), pp.
1242
1264
.10.1017/aer.2022.32
44.
Salcedo
,
R. L.
, and
Lima
,
R. M.
,
1999
, “
On the Optimum Choice of Decision Variables for Equation-Oriented Global Optimization
,”
Ind. Eng. Chem. Res.
,
38
(
12
), pp.
4742
4758
.10.1021/ie9901980
45.
Rodrigues
,
D.
, and
Bonvin
,
D.
,
2020
, “
On Reducing the Number of Decision Variables for Dynamic Optimization
,”
Optim. Control Appl. Methods
,
41
(
1
), pp.
292
311
.10.1002/oca.2543
46.
Ying
,
X.
,
2019
, “
An Overview of Overfitting and Its Solutions
,”
J. Phys.: Conf. Ser.
,
1168
, p.
022022
.10.1088/1742-6596/1168/2/022022
47.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
, et al., 2016, “TensorFlow: A System for Large-Scale Machine Learning,” Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (
OSDI '16
), Savannah, GA, Nov. 2–4, pp. 265–283.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
48.
Melkumova
,
L. E.
, and
Shatskikh
,
S. Ya.
,
2017
, “
Comparing Ridge and LASSO Estimators for Data Analysis
,”
Procedia Eng.
, 201, pp. 746–755
.10.1016/j.proeng.2017.09.615
49.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
Proceedings of the 27th International Conference on Machine Learning
,
Haifa, Israel
, June 21–24, pp.
807
814
.https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
50.
Kingma
,
D. P.
, and
Ba
,
L. J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
, May 7–9.https://www.researchgate.net/publication/269935079_Adam_A_Method_for_Stochastic_Optimization
51.
Wickramansinghe
,
N. K.
,
Harada
,
A.
, and
Miyazawa
,
Y.
,
2012
, “
Flight Trajectory Optimization for an Efficient Air Transport System
,”
28th International Congress of the Aeronautical Sciences
,
Brisbane, Australia
, Sept. 23–28, pp.
4399
4410
.https://www.researchgate.net/publication/289340220_Flight_trajectory_optimization_for_an_efficient_air_transportation_system
52.
Felix
,
P. R.
, and
Botez
,
R. M.
, “
Flight Trajectory Optimization Through Genetic Algorithms Coupling Vertical and Lateral Profiles
,”
ASME
Paper No. IMECE2014-36510.10.1115/IMECE2014-36510
53.
Murrieta-Mendoza
,
A.
,
Ruiz
,
H.
, and
Botez
,
R. M.
,
2017
, “
Vertical Reference Flight Trajectory Optimization With the Particle Swarm Optimization
,”
Proceedings of the IASTED International Conference on Modeling, Identification and Control
, Innsbruck, Austria, Feb. 20–21, pp.
138
146
.10.2316/P.2017.848-032
54.
Lindner
,
M.
,
Rosenow
,
J.
,
Zeh
,
T.
, and
Fricke
,
H.
,
2020
, “
In-Flight Aircraft Trajectory Optimization Within Corridors Defined by Ensemble Weather Forecasts
,”
Aerospace
,
7
(
10
), p.
144
.10.3390/aerospace7100144
55.
Rosenow
,
J.
,
Lindner
,
M.
, and
Scheiderer
,
J.
,
2021
, “
Advanced Flight Planning and the Benefit of In-Flight Aircraft Trajectory Optimization
,”
Sustainability
,
13
(
3
), p.
1383
.10.3390/su13031383
You do not currently have access to this content.