Abstract

A paradigm shift in the traditional sequential design approaches is critically essential to create application-specific hierarchical and multifunctional materials with superior long-term performance for next-generation energy technologies involving extreme environments. In the current work, we aim to leverage the flexibility and geometric/compositional complexity offered by additive manufacturing to demonstrate this new approach by codesigning a compositionally graded Ni-based alloy for molten salts\sCO2 heat exchangers to enable mitigation of environmental degradation of surfaces exposed to molten halide salts, while simultaneously suppressing the consequent deterioration in mechanical stability. Thermokinetic modeling describing the underlying physics of thermally- and environmentally induced spatiotemporal compositional and microstructural evolution will be employed to predict the parameter space of material deposition processes and precisely identify the required composition gradient. Preliminary corrosion and mechanical testing of the dual material demonstrated the potential of the material to replace existing solid solution strengthened materials for this application.

References

1.
Chyrkin
,
A.
,
Pillai
,
R.
,
Ackermann
,
H.
,
Hattendorf
,
H.
,
Richter
,
S.
,
Nowak
,
W.
,
Gruner
,
D.
, and
Quadakkers
,
W. J.
,
2015
, “
Modeling Carbide Dissolution in Alloy 602 CA During High Temperature Oxidation
,”
Corros. Sci.
,
96
, pp.
32
41
.10.1016/j.corsci.2015.03.019
2.
Pillai
,
R.
,
Raiman
,
S. S.
, and
Pint
,
B. A.
,
2021
, “
First Steps Toward Predicting Corrosion Behavior of Structural Materials in Molten Salts
,”
J. Nucl. Mater.
,
546
, p.
152755
.10.1016/j.jnucmat.2020.152755
3.
Romedenne
,
M.
,
Pillai
,
R.
,
Harris
,
B.
, and
Pint
,
B. A.
,
2022
, “
Compatibility of Fe-Cr-Al and Fe-Cr-Al-Mo Oxide Dispersion Strengthened Steels With Static Liquid Sodium at 700 C
,”
J. Nucl. Mater.
,
569
, p.
153919
.10.1016/j.jnucmat.2022.153919
4.
Naumenko
,
D.
,
Pillai
,
R.
,
Chyrkin
,
A.
, and
Quadakkers
,
W. J.
,
2017
, “
Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
26
(
8
), pp.
1743
1757
.10.1007/s11666-017-0649-z
5.
Streiff
,
R.
, and
Boone
,
D. H.
,
1988
, “
Corrosion Resistant Modified Aluminide Coatings
,”
J. Mater. Eng.
,
10
(
1
), pp.
15
26
.10.1007/BF02834110
6.
Pillai
,
R.
,
Kane
,
K.
,
Lance
,
M.
, and
Pint
,
B. A.
,
2021
, “
Computational Methods to Accelerate Development of Corrosion Resistant Coatings for Industrial Gas Turbines
,”
Proceedings of the 14th International Symposium on Superalloys
,
Springer International Publishing
, Champion, PA, Sept. 13–16, pp.
824
833
.10.1007/978-3-030-51834-9_81
7.
Pillai
,
R.
,
Dryepondt
,
S.
,
Armstrong
,
B. L.
,
Lance
,
M. J.
, and
Muralidharan
,
G. M.
,
2021
, “
Evaluating the Efficacy of Aluminide Coatings to Improve Oxidation Resistance of High Performance Engine Valve Alloys
,”
Surf. Coat. Tech.
,
421
, p.
127401
.10.1016/j.surfcoat.2021.127401
8.
Jalowicka
,
A.
,
Naumenko
,
D.
,
Ernsberger
,
M.
,
Herzog
,
R.
, and
Quadakkers
,
W. J.
,
2018
, “
Alumina Formation and Microstructural Changes of Aluminized CoNiCrAlY Coating During High Temperature Exposure in the Temperature Range 925 Degrees C-1075 Degrees C
,”
Mat. High Temp.
,
35
(
1–3
), pp.
66
77
.10.1080/09603409.2017.1392114
9.
Rae
,
C. M. F.
,
Karunaratne
,
M.
,
Small
,
C. J.
,
Broomfield
,
R. W.
, and
Jones
,
C. N.
,
2000
, “
Topologically Close Packed Phases in an Experimental Rhenium-Containing Single Crystal Superalloy
,”
Superalloys
, Champion, PA, Sept. 17–21, pp.
767
776
.https://www.tms.org/superalloys/10.7449/2000/Superalloys_2000_767_776.pdf
10.
Pillai
,
R.
,
Sloof
,
W. G.
,
Chyrkin
,
A.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
,
2015
, “
A New Computational Approach for Modelling the Microstructural Evolution and Residual Lifetime Assessment of MCrAlY Coatings
,”
Mat. High Temp.
,
32
(
1–2
), pp.
57
67
.10.1179/0960340914Z.00000000063
11.
Pillai
,
R.
,
Wessel
,
E.
,
Nowak
,
W. J.
,
Naumenko
,
D.
, and
Quadakkers
,
W. J.
,
2018
, “
Predicting Effect of Base Alloy Composition on Oxidation- and Interdiffusion-Induced Degradation of an MCrAlY Coating
,”
JOM
,
70
(
8
), pp.
1520
1526
.10.1007/s11837-018-2950-9
12.
Beele
,
W.
,
Czech
,
N.
,
Quadakkers
,
W. J.
, and
Stamm
,
W.
,
1997
, “
Long-Term Oxidation Tests on a Re-Containing MCrAlY Coating
,”
Surf. Coat. Tech.
,
94-95
(
1–3
), pp.
41
45
.10.1016/S0257-8972(97)00473-8
13.
Nijdam
,
T. J.
, and
Sloof
,
W. G.
,
2005
, “
The Role of Transient Oxides During Deposition and Thermal Cycling of Thermal Barrier Coatings
,”
Mat. High Temp.
,
22
(
3
), pp.
551
559
.10.3184/096034005782744010
14.
Mehos
,
M.
,
Turchi
,
C.
,
Vidal
,
J.
,
Wagner
,
M.
,
Ma
,
Z.
,
Ho
,
C.
,
Kolb
,
W.
,
Andraka
,
C.
, and
Kruizenga
,
A.
,
2017
, “
Concentrating Solar Power Gen3 Demonstration Roadmap
,” NREL, Report No.
NREL/TP-5500-67464
.https://www.nrel.gov/docs/fy17osti/67464.pdf
15.
Zhang
,
X.
,
Chen
,
Y.
, and
Liou
,
F.
,
2019
, “
Fabrication of SS316 L-IN625 Functionally Graded Materials by Powder-Fed Directed Energy Deposition
,”
Sci. Technol. Weld. Joining
,
24
(
5
), pp.
504
516
.10.1080/13621718.2019.1589086
16.
Durejko
,
T.
,
Łazińska
,
M.
,
Dworecka-Wójcik
,
J.
,
Lipiński
,
S.
,
Varin
,
R. A.
, and
Czujko
,
T.
,
2019
, “
The Tribaloy T-800 Coatings Deposited by Laser Engineered Net Shaping (LENSTM)
,”
Materials
,
12
(
9
), p.
1366
.10.3390/ma12091366
17.
Yakovlev
,
A.
,
Trunova
,
E.
,
Grevey
,
D.
,
Pilloz
,
M.
, and
Smurov
,
I.
,
2005
, “
Laser-Assisted Direct Manufacturing of Functionally Graded 3D Objects
,”
Surf. Coat. Tech.
,
190
(
1
), pp.
15
24
.10.1016/j.surfcoat.2004.07.070
18.
Dass
,
A.
, and
Moridi
,
A.
,
2019
, “
State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design
,”
Coatings
,
9
(
7
), pp.
418
426
.10.3390/coatings9070418
19.
Zhang
,
C.
,
Chen
,
F.
,
Huang
,
Z.
,
Jia
,
M.
,
Chen
,
G.
,
Ye
,
Y.
,
Lin
,
Y.
, et al.,
2019
, “
Additive Manufacturing of Functionally Graded Materials: A Review
,”
Mater. Sci. Eng.
,
764
, p.
138209
.10.1016/j.msea.2019.138209
20.
Ansari
,
M.
,
Jabari
,
E.
, and
Toyserkani
,
E.
,
2021
, “
Opportunities and Challenges in Additive Manufacturing of Functionally Graded Metallic Materials Via Powder-Fed Laser Directed Energy Deposition: A Review
,”
J. Mater. Process. Technol.
,
294
, p.
117117
.10.1016/j.jmatprotec.2021.117117
21.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.10.1179/1743280411Y.0000000014
22.
Vilar
,
R.
,
2014
, “
10.07 - Laser Powder Deposition
,”
Comprehensive Materials Processing
,
S.
Hashmi
,
G. F.
Batalha
,
C. J.
Van Tyne
, and
B.
Yilbas
, eds.,
Elsevier
,
Oxford
, UK, pp.
163
216
.
23.
McCoy
,
H. E.
,
1969
, “
The Inor-8 Story
,”
Oak Ridge Nat. Lab. Rev.
,
3
(
2
), pp.
35
48
.https://www.osti.gov/biblio/4766202
24.
Mccoy
,
H. E.
,
Beatty
,
R. L.
,
Cook
,
W. H.
,
Gehlbach
,
R. E.
,
Kennedy
,
C. R.
,
Koger
,
J. W.
,
Litman
,
A. P.
,
Sessions
,
C. E.
, and
Weir
,
J. R.
,
1970
, “
New Developments in Materials for Molten-Salt Reactors
,”
Nucl. Appl. Technol.
,
8
(
2
), pp.
156
169
.10.13182/NT70-A28622
25.
Macpherson
,
H. G.
,
1972
, “
Development of Materials and Systems for Molten-Salt Reactor Concept
,”
React. Technol
,
15
(
2
), pp.
136
155
.
26.
Sohal
,
M. S.
,
Ebner
,
M. A.
,
Sabharwall
,
P.
, and
Sharpe
,
P.
,
2010
, “
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
,”
Idaho National Laboratory (INL)
, Report No.
INL/EXT-10-18297; TRN: US201012%%1219
.https://www.osti.gov/biblio/980801
27.
McCoy
,
J.
, and
E
,
H.
,
1978
, “
Status of Materials Development for Molten Salt Reactors
,”
Oak Ridge National Lab
.,
TN,
Report No. ORNL/TM-5920; TRN: 78-005224 United States 10.2172/5195742 TRN: 78-005224 Dep. NTIS, PC A03/MF A01. ORNL English.
28.
Busby
,
J.
,
Garrison
,
L.
,
Lin
,
L.
,
Raiman
,
S. S.
,
Sham
,
S.
,
Silva
,
C. M.
, and
Wang
,
H.
,
2019
, “
Technical Gap Assessment for Materials and Component Integrity Issues for Molten Salt Reactors
,”
Oak Ridge National Lab
.,
TN,
Report No. ORNL/SPR-2019/1089 Sponsor Technical Letter Report Task Order: NRC-HQ-25-17-0001.
29.
Harris
,
K.
, and
Wahl
,
J. B.
, “
CMSX®-486: A New Grain Boundary Strengthened Single Crystal Superalloy
,”
ASME
Paper No. GT2002-30487.10.1115/GT2002-30487
30.
Kruger
,
K. L.
,
2017
, “
15 - HAYNES 282 Alloy
,”
Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
,
A.
Di Gianfrancesco
, ed.,
Woodhead Publishing
, Sawston, UK, pp.
511
545
.
31.
Chen
,
G. S.
,
Sun
,
I. W.
,
Sienerth
,
K. D.
,
Edwards
,
A. G.
, and
Mamantov
,
G.
,
1993
, “
Removal of Oxide Impurities From Alkali Haloaluminate Melts Using Carbon-Tetrachloride
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1523
1526
.10.1149/1.2221596
32.
Mayes
,
R. T.
,
Kurley Iii
,
J. M.
,
Halstenberg
,
P. W.
,
McAlister
,
A.
,
Sulejmanovic
,
D.
,
Raiman
,
S. S.
,
Dai
,
S.
, and
Pint
,
B. A.
,
2018
, “
Purification of Chloride Salts for Concentrated Solar Applications
,” ORNL, Report No.
ORNL/LTR-2018/1052
.https://info.ornl.gov/sites/publications/Files/Pub121106.pdf
33.
Pillai
,
R.
,
Galiullin
,
T.
,
Chyrkin
,
A.
, and
Quadakkers
,
W. J.
,
2016
, “
Methods to Increase Computational Efficiency of CALPHAD-Based Thermodynamic and Kinetic Models Employed in Describing High Temperature Material Degradation
,”
CALPHAD
,
53
, pp.
62
71
.10.1016/j.calphad.2016.03.004
34.
Larsson
,
H.
,
Strandlund
,
H.
, and
Hillert
,
M.
,
2006
, “
Unified Treatment of Kirkendall Shift and Migration of Phase Interfaces
,”
Acta Mater.
,
54
(
4
), pp.
945
951
.10.1016/j.actamat.2005.10.022
35.
Larsson
,
H.
, and
Engstrom
,
A.
,
2006
, “
A Homogenization Approach to Diffusion Simulations Applied to Alpha+Gamma Fe-Cr-Ni Diffusion Couples
,”
Acta Mater.
,
54
(
9
), pp.
2431
2439
.10.1016/j.actamat.2006.01.020
36.
Thermo
-
Calc
,
2018
, “
Thermo-Calc Software TCNi8/Ni-Based Superalloys Database Version 8
,” Sweden.
37.
MobNi4
,
2018
, “
Thermo-Calc Software MobNi4/Ni-Alloys Mobility Database Version 4
,” Sweden.
38.
Pike
,
L. M.
,
2008
, “
Development of a Fabricable Gamma-Prime (Gamma ') Strengthened Superalloy
,”
Proceedings of 11th International Symposium on Superalloys, Minerals, Metals & Materials Soc, WARRENDALE
, Champion, PA, Sept. 14–18, pp.
191
200
.https://www.tms.org/superalloys/10.7449/2008/Superalloys_2008_191_200.pdf
39.
Gehlbach
,
R.
, and
McCoy
,
H. E. J.
,
1968
, “
Phase Instability in Hastelloy N
,”
Superalloys
, pp.
346
366
.
40.
Wang
,
L.
,
Mao
,
K.
,
Tortorelli
,
P. F.
,
Maziasz
,
P. J.
,
Thangirala
,
M.
,
Unocic
,
K. A.
, and
Chen
,
X. F.
,
2021
, “
Effect of Heterogeneous Microstructure on the Tensile and Creep Performances of Cast Haynes 282 Alloy
,”
Mater. Sci. Eng.
,
828
, p.
142099
.10.1016/j.msea.2021.142099
41.
Romedenne
,
M.
,
Haynes
,
A.
, and
Pillai
,
R.
,
2023
, “
Cyclic Oxidation Behavior of Selected Commercial NiCr-Alloys for Engine Exhaust Valves in Wet Air Environment Between 800 and 950 °C
,”
Corros. Sci.
,
211
, p.
110817
.10.1016/j.corsci.2022.110817
42.
Mukherjee
,
S.
,
Sahu
,
B. P.
,
Sarkar
,
S. K.
,
Ahlawat
,
S.
,
Biswas
,
A.
,
Mandal
,
G. K.
,
Tarafder
,
S.
, and
Kar
,
S. K.
,
2022
, “
Temporal Evolution of γ′ Precipitate in HAYNES 282 During Ageing: Growth and Coarsening Kinetics, Solute Partitioning and Lattice Misfit
,”
Materialia
,
26
, p.
101633
.10.1016/j.mtla.2022.101633
43.
Pint
,
B. A.
,
McMurray
,
J. W.
,
Willoughby
,
A. W.
,
Kurley
,
J. M.
,
Pearson
,
S. R.
,
Lance
,
M. J.
,
Leonard
,
D. N.
, et al.,
2019
, “
Re-Establishing the Paradigm for Evaluating Halide Salt Compatibility to Study Commercial Chloride Salts at 600 °C–800 °C
,”
Mater. Corros.
,
70
(
8
), pp.
1439
1449
.10.1002/maco.201810638
44.
Raiman
,
S. S.
,
Kurley
,
J. M.
,
Sulejmanovic
,
D.
,
Willoughby
,
A.
,
Nelson
,
S.
,
Mao
,
K.
,
Parish
,
C. M.
,
Greenwood
,
M. S.
, and
Pint
,
B. A.
,
2022
, “
Corrosion of 316H Stainless Steel in Flowing FLiNaK Salt
,”
J. Nucl. Mater.
,
561
, p.
153551
.10.1016/j.jnucmat.2022.153551
45.
Pillai
,
R.
,
Sulejmanovic
,
D.
,
Lowe
,
T.
,
Raiman
,
S.
, and
Pint
,
B. A.
,
2022
, “
Establishing a Design Strategy for Corrosion Resistant Structural Materials in Molten Salt Technologies
,”
JOM
,
75
(
4
), pp.
994
1005
.10.1007/s11837-022-05647-9
46.
Pint
,
B. A.
,
Pillai
,
R.
,
Lance
,
M. J.
, and
Keiser
,
J. R.
,
2020
, “
Effect of Pressure and Thermal Cycling on Long-Term Oxidation in CO2 and Supercritical CO2
,”
Oxid. Met.
,
94
(
5–6
), pp.
505
526
.10.1007/s11085-020-10004-9
47.
Holcomb
,
G. R.
,
Carney
,
C.
, and
Doğan
,
Ö. N.
,
2016
, “
Oxidation of Alloys for Energy Applications in Supercritical CO2 and H2O
,”
Corros. Sci.
,
109
, pp.
22
35
.10.1016/j.corsci.2016.03.018
48.
Pillai
,
R.
,
Romedenne
,
M.
, and
Lee
,
S.
,
2022
, “
Development of an Open-Source Alloy Selection and Lifetime Assessment Tool for Structural Components in CSP
,” Report No.
ORNL/TM-2021/2365
.https://www.osti.gov/biblio/1843687
49.
Haynes-International
,
2020
, “
Datasheet HASTELLOY® N
,” Haynes-International, Kokomo, IN, accessed Nov. 2022, https://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/corrosion-resistant-alloys/brochures/n-brochure.pdf?sfvrsn=18
50.
HAYNES-International
,
2008
, “
Datasheet Haynes 282 Alloy
,” Haynes-International, Kokomo, IN, accessed Oct. 31, 2023, https://haynesintl.com/docs/default-source/pdfs/new-alloy-brochures/high-temperature-alloys/brochures/282-brochure.pdf?sfvrsn=20
51.
Ramakrishnan
,
A.
, and
Dinda
,
G. P.
,
2019
, “
Microstructure and Mechanical Properties of Direct Laser Metal Deposited Haynes 282 Superalloy
,”
Mater. Sci. Eng.
,
748
, pp.
347
356
.10.1016/j.msea.2019.01.101
You do not currently have access to this content.