Abstract

Due to high penetration of renewables, the EU energy system is undergoing a transition from large-scale centralized generation toward small-scale distributed generation. The increasing share of intermittent renewables such as solar and wind has become the main driver for dispatchable distributed energy generation technologies to maintain the grid flexibility and stability. In this context, micro gas turbines (MGTs) with high fuel and operation flexibility could play a crucial role to guarantee the grid stability, enabling deeper penetration of the intermittent renewable energy sources. Despite this, the MGT market is still considered to be niche, and there are R&D&I challenges that need to be addressed to further promote this technology in distributed generation applications. Innovative MGT cycles based on a cycle humidification concept can be considered to obtain higher system performance. However, given the fact that MGTs are installed close to the consumption points, where they are operated by nontechnical prosumers with very limited access to maintenance services, they should also offer high availability and reliability to avoid unexpected outages and secure the supply. Therefore, intelligent monitoring systems are needed that can support nonexpert end-users to detect degradation and plan maintenance before a breakdown occurs. In this study, we investigated and developed advanced methods based on artificial neural networks (ANNs) for condition monitoring of a humidified MGT cycle under real-life operational conditions. To create a high-performing model, extensive data preprocessing has been conducted to remove data outliers and select optimum model features, which provide best results. Additionally, the model hyperparameters such as learning rate, momentum, and number of hidden nodes have been altered to achieve the most accurate predictions. The results of this study have provided a baseline ANN model capable of conducting condition monitoring of a micro humid air turbine (mHAT) system, which will be applied to additional studies in the future.

References

1.
Renewables
,
I. E. A.
,
2021
, “
Analysis and Forecast to 2026
,”
International Energy Agency
,
Paris, France
.
2.
Heat
,
C.
, and
Partnership
,
P.
,
2015
, “
Catalog of CHP Technologies, Section 5. Technology Characterization – Microturbines
,”
U.S. Environmental Protection Agency
,
Washington, DC
.
3.
Nikpey
,
H.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2013
, “
Experimental Investigation of the Performance of a Micro Gas Turbine Fueled With Mixtures of Natural Gas and Biogas
,” ASME Paper No. IMECE2013-64299. 10.1115/IMECE2013-64299
4.
Nikpey
,
Somehsaraei
,
H.
,
Mansouri
,
Majoumerd
,
M.
,
Breuhaus
,
P.
, and
Assadi
,
M.
,
2014
, “
Performance Analysis of a Biogas-Fueled Micro Gas Turbine Using a Validated Thermodynamic Model
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
181
190
.10.1016/j.applthermaleng.2014.02.010
5.
Du Toit
,
M.
,
Engelbrecht
,
N.
,
Oelofse
,
S. P.
, and
Bessarabov
,
D.
,
2020
, “
Performance Evaluation and Emissions Reduction of a Micro Gas Turbine Via the co-Combustion of H2/CH4/CO2 Fuel Blends
,”
Sustainable Energy Technol. Assess.
,
39
, p.
100718
.10.1016/j.seta.2020.100718
6.
Reale
,
F.
,
Calabria
,
R.
,
Chiariello
,
F.
,
Pagliara
,
R.
, and
Massoli
,
P.
,
2012
, “
A Micro Gas Turbine Fuelled by Methane-Hydrogen Blends
,”
Appl. Mech. Mater.
,
232
, pp.
792
796
.10.4028/www.scientific.net/AMM.232.792
7.
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and Office of Power Technologies
,
2000
, “
Advanced Microturbine Systems - Program Plan for Fiscal Years 2000 Through 2006
,”
U.S. Department of Energy
,
Washington, DC
, accessed Nov. 14, 2017, http://www.bioturbine.org/Publications/PDF/DOE-ProgramPlan-2000.pdf
8.
De Paepe
,
W.
,
Carrero
,
M. M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Toward Higher Micro Gas Turbine Efficiency and Flexibility-Humidified Micro Gas Turbines: A Review
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081702
.10.1115/1.4038365
9.
Nikpey
,
H.
,
Majoumerd
,
M. M.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2014
, “
Thermodynamic Analysis of Innovative Micro Gas Turbine Cycles
,” ASME Paper No. GT2014-26917. 10.1115/GT2014-26917
10.
Nikpey
,
Somehsaraei
,
H.
,
Ali
,
U.
,
Font-Palma
,
C.
,
Mansouri
,
Majoumerd
,
M.
,
Akram
,
M.
,
Pourkashanian
,
M.
, and
Assadi
,
M.
,
2017
, “
Evaluation of a Micro Gas Turbine With Post-Combustion CO2 Capture for Exhaust Gas Recirculation Potential With Two Experimentally Validated Models
,” ASME Paper No. GT2017-63551. 10.1115/GT2017-63551
11.
De Paepe
,
W.
,
Carrero
,
M. M.
,
Bram
,
S.
, and
Contino
,
F.
,
2015
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: A Thermodynamic Performance Analysis
,” ASME Paper No. GT2015-43267. 10.1115/GT2015-43267
12.
Montero Carrero
,
M.
,
de Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
13.
De Paepe
,
W.
,
Giorgetti
,
S.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Towards Highly-Flexible Carbon-Clean Power Production Using Gas Turbines: Exhaust Recirculation and Cycle Humidification
,”
The Future of Gas Turbine Technology-9th International Gas Turbine Conference
, Brussels, Belgium, Oct. 10–11, p.
21-IGTC18
.https://www.researchgate.net/publication/335260467_TOWARDS_HIGHLYFLEXIBLE_CARBONCLEAN_POWER_PRODUCTION_USING_GAS_TURBINES_EXHAUST_GAS_RECIRCULATION_AND_CYCLE_HUMIDIFICATION
14.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Brussel
,
E.
,
Contino
,
F.
, and
de Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,” ASME Paper No. GT2013-94569. 10.1115/GT2013-94569
15.
Belokon
,
A.
,
Khritov
,
K.
,
Klyachko
,
L.
,
Tschepin
,
S.
,
Zakharov
,
V.
, and
Jr. Opdyke
,
G.
,
2002
, “
Prediction of Combustion Efficiency and NOx Levels for Diffusion Flame Combustors in HAT Cycles
,” ASME Paper No. GT2002-30609. 10.1115/GT2002-30609
16.
Ferrarotti
,
M.
,
De Paepe
,
W.
, and
Parente
,
A.
,
2021
, “
Reactive Structures and NOx Emissions of Methane/Hydrogen Mixtures in Flameless Combustion
,”
Int. J. Hydrogen Energy
,
46
(
68
), pp.
34018
34045
.10.1016/j.ijhydene.2021.07.161
17.
De Paepe
,
W.
,
Sayad
,
P.
,
Bram
,
S.
,
Klingmann
,
J.
, and
Contino
,
F.
,
2016
, “
Experimental Investigation of the Effect of Steam Dilution on the Combustion of Methane for Humidified Micro Gas Turbine Applications
,”
Combust. Sci. Technol.
,
188
(
8
), pp.
1199
1219
.10.1080/00102202.2016.1174116
18.
Oke
,
S. G.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Oliver Paschereit
,
C.
,
2013
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,” ASME Paper No. GTP-14-1050. 10.1115/GTP-14-1050
19.
Montero Carrero
,
M.
,
Luigi Ferrari
,
M.
,
De Paepe
,
W.
, and
Parente
,
A.
,
2015
, “
Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine
,” ASME Paper No. GT2015-43277. 10.1115/GT2015-43277
20.
De Paepe
,
W.
,
Carrero
,
M. M.
,
Bram
,
S.
, and
Contino
,
F.
,
2014
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: Test Rig Evaluation
,” ASME Paper No. GT2014-26123. 10.1115/GT2014-26123
21.
Hanachi
,
H.
,
Liu
,
J.
, and
Mechefske
,
C.
,
2018
, “
Multi-Mode Diagnosis of a Gas Turbine Engine Using an Adaptive Neuro-Fuzzy System
,”
Chin. J. Aeronaut.
,
31
(
1
), pp.
1
9
.10.1016/j.cja.2017.11.017
22.
Nikpey
,
H.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2013
, “
Development of an Optimized Artificial Neural Network Model for Combined Heat and Power Micro Gas Turbines
,”
Appl. Energy
,
108
, pp.
137
148
.10.1016/j.apenergy.2013.03.016
23.
Matuck
,
G. R.
,
Barbosa
,
J. R.
,
Bringhenti
,
C.
, and
Lima
,
I.
,
2010
, “
Multiple Faults Detection of Gas Turbine by MLP Neural Network
,” ASME Paper No. GT2009-59964. 10.1115/GT2009-59964
24.
Palmé
,
T.
,
Fast
,
M.
, and
Thern
,
M.
,
2011
, “
Gas Turbine Sensor Validation Through Classification With Artificial Neural Networks
,”
Appl. Energy
,
88
(
11
), pp.
3898
3904
.10.1016/j.apenergy.2011.03.047
25.
Yoon
,
J. E.
,
Lee
,
J. J.
,
Kim
,
T. S.
, and
Sohn
,
J. L.
,
2008
, “
Analysis of Performance Deterioration of a Micro Gas Turbine and the Use of Neural Network for Predicting Deteriorated Component Characteristics
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2516
2525
.10.1007/s12206-008-0808-8
26.
Hamouda
,
M. R.
,
Marei
,
M. I.
,
Nassar
,
M. E.
, and
Salama
,
M. M. A.
,
2020
, “
ANN-Supervised Interface System for Microturbine Distributed Generator
,”
Canadian Conference on Electrical and Computer Engineering
, London, ON, Canada, Aug. 30–Sept. 2.10.1109/CCECE47787.2020.9255730
27.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
de Ruyck
,
J.
,
2014
, “
New Concept of Spray Saturation Tower for Micro Humid Air Turbine Applications
,”
Appl. Energy
,
130
, pp.
723
737
.10.1016/j.apenergy.2014.03.055
28.
De Paepe
,
W.
,
Pappa
,
A.
,
Coppitters
,
D.
,
Carrero
,
M. M.
,
Tsirikoglou
,
P.
, and
Contino
,
F.
,
2021
, “
Recuperator Performance Assessment in Humidified Micro Gas Turbine Applications Using Experimental Data Extended With Preliminary Support Vector Regression Model Analysis
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071030
.10.1115/1.4049266
29.
De Paepe
,
W.
,
Pappa
,
A.
,
Coppitters
,
D.
,
Carrero
,
M. M.
,
Tsirikoglou
,
P.
, and
Contino
,
F.
,
2022
, “
Control Strategy Development for Optimized Operational Flexibility From Humidified Micro Gas Turbine: Saturation Tower Performance Assessment
,” ASME Paper No. GTP-21-1376. 10.1115/GTP-21-1376
30.
De Paepe
,
W.
,
2014
, “
Flexible Heat Production From a Micro Gas Turbine: Design and Experimental Analysis of Humidified Air Cycles
,” Ph.D. thesis,
VUBPRESS Brussels University Press
,
Brussels, Belgium
.https://portal.research.lu.se/en/activities/flexible-heatproduction-from-a-micro-gas-turbine-design-and-expe
You do not currently have access to this content.