Abstract

With aviation's dependence on the high volumetric energy density offered by liquid fuels, Sustainable Aviation Fuels (SAFs) could offer the fastest path toward the decarbonization of aircrafts. However, the chemical properties of SAFs present new challenges, and research is needed to better understand their injection, combustion, and emission processes. While efforts such as the United States National Jet Fuel Combustion Program (NJFCP) that investigated several aspects in detail, certain processes were unfortunately beyond the reach of this program. One of them in particular is about droplet evaporation at relevant pressures and temperatures, and this represents the focus of the present paper. To address this gap, we characterized the evaporation and mixing of spray droplets injected into well-controlled thermodynamic environments at conditions relevant to modern and next-generation aero-engine combustors. We tested three fuels from the NJFCP, namely, an average Jet A fuel (A-2), an alcohol-to-jet fuel containing highly branched dodecane and hexadecane type components (C-1), and a blend made of 40% C-1 and 60% isoparaffins ranging from 9 to 12 carbon atoms (C-4). We also tested a single component normal alkane: n-dodecane, as well as an advanced bioderived cyclo-alkane fuel: bicyclohexyl. The time evolution of fuel droplets was monitored using high-speed long-distance microscopy in a specific configuration that enabled sharp images to be acquired at these extreme conditions. The collected images were processed using a purposely developed and trained machine learning (ML) algorithm to detect and characterize the droplets' evaporation regime. The results revealed different evaporation regimes, such as classical and diffusive. In agreement with previous studies, evaporation regimes appear to be controlled by ambient pressure, temperature, and fuel type. The measurements demonstrate that diffusive evaporation is relevant at high-pressure conditions, such as takeoff combustor pressures for modern commercial aircraft engines. However, classical evaporation mostly controls mixing at lower pressure, such as cruise altitude conditions. The ML analysis emphasized that multiple evaporation regimes co-existed at the same operating condition and no significant relationship was found between droplet size and evaporation regime. The findings of this work constitute a database for validating spray and droplet models that are necessary for implementing lower emissions fuels in aero-engines.

References

1.
Colket
,
M. B.
,
2013
, “
Particulate Formation
,”
Gas Turbine Emissions
,
T. C.
Lieuwen
, and
V.
Yang
, eds.,
Cambridge University Press
,
Cambridge
, UK, pp.
123
153
.
2.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Skowron
,
A.
,
Allen
,
M. R.
,
Burkhardt
,
U.
,
Chen
,
Q.
,
Doherty
,
S. J.
, et al.,
2021
, “
The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018
,”
Atmos. Environ.
,
244
, p.
117834
.10.1016/j.atmosenv.2020.117834
3.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Forster
,
P. M.
,
Newton
,
P. J.
,
Wit
,
R. C.
,
Lim
,
L. L.
,
Owen
,
B.
, and
Sausen
,
R.
,
2009
, “
Aviation and Global Climate Change in the 21st Century
,”
Atmos. Environ.
,
43
(
22–23
), pp.
3520
3537
.10.1016/j.atmosenv.2009.04.024
4.
Heyne
,
J. S.
,
Peiffer
,
E.
,
Colket
,
M. B.
,
Jardines
,
A.
,
Shaw
,
C.
,
Moder
,
J. P.
,
Roquemore
,
W. M.
, et al.,
2018
, “
Year 3 of the National Jet Fuels Combustion Program: Practical and Scientific Impacts of Alternative Jet Fuel Research
,”
AIAA
Paper No. 2018-1667. 10.2514/6.2018-1667
5.
Heyne
,
J.
,
Rauch
,
B.
,
Le Clercq
,
P.
, and
Colket
,
M.
,
2021
, “
Sustainable Aviation Fuel Prescreening Tools and Procedures
,”
Fuel
,
290
, p.
120004
.10.1016/j.fuel.2020.120004
6.
Colket
,
M.
,
Heyne
,
J.
,
Rumizen
,
M.
,
Gupta
,
M.
,
Edwards
,
T.
,
Roquemore
,
W. M.
,
Andac
,
G.
, et al.,
2017
, “
Overview of the National Jet Fuels Combustion Program
,”
AiAA J.
,
55
(
4
), pp.
1087
1104
.10.2514/1.J055361
7.
Heyne
,
J. S.
,
Colket
,
M. B.
,
Gupta
,
M.
,
Jardines
,
A.
,
Moder
,
J. P.
,
Edwards
,
J. T.
,
Roquemore
,
M.
,
Li
,
C.
, and
Rumizen
,
M.
,
2017
, “
Year 2 of the National Jet Fuels Combustion Program: Towards a Streamlined Alternative Jet Fuels Certification Process
,”
AIAA
Paper No. 2017-0145. 10.2514/6.2017-0145
8.
Mayhew
,
E.
,
Mitsingas
,
C. M.
,
McGann
,
B.
,
Hendershott
,
T.
,
Stouffer
,
S.
,
Wrzesinski
,
P.
,
Caswell
,
A. W.
, and
Lee
,
T.
,
2017
, “
Spray Characteristics and Flame Structure of Jet a and Alternative Jet Fuels
,”
AIAA
Paper No. 2017-0148. 10.2514/6.2017-0148
9.
Mayhew
,
E.
,
Wood
,
E.
,
McGann
,
B.
,
Mitsingas
,
C.
,
Oldani
,
A.
,
Rajasegar
,
R.
,
Temme
,
J.
, et al.,
2021
, “
High-Speed Phase Contrast Imaging of Spray Breakup of Jet Fuels Under Combusting Conditions
,”
Atomization Sprays
,
31
(
1
), pp.
31
46
.10.1615/AtomizSpr.2020034440
10.
Di Sabatino
,
F.
,
Wan
,
K.
, and
Manin
,
J.
,
2023
, “
Single-Hole Atomizer (SHA) Research: A New Way to Study Spray Flame Dynamics and Soot Formation for Aero-Engine Combustion
,”
AIAA
Paper No. 2023-2046.
11.
Chehroudi
,
B.
,
2012
, “
Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications
,”
Int. J. Aerosp. Eng.
,
2012
, pp.
1
31
.10.1155/2012/121802
12.
Manin
,
J.
,
Bardi
,
M.
,
Pickett
,
L. M.
,
Dahms
,
R. N.
, and
Oefelein
,
J. C.
,
2014
, “
Microscopic Investigation of the Atomization and Mixing Processes of Diesel Sprays Injected Into High Pressure and Temperature Environments
,”
Fuel
,
134
, pp.
531
543
.10.1016/j.fuel.2014.05.060
13.
Crua
,
C.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2017
, “
On the Transcritical Mixing of Fuels at Diesel Engine Conditions
,”
Fuel
,
208
, pp.
535
548
.10.1016/j.fuel.2017.06.091
14.
Faeth
,
G. M.
,
1977
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
,
3
(
4
), pp.
191
224
.10.1016/0360-1285(77)90012-0
15.
Falgout
,
Z.
,
Rahm
,
M.
,
Sedarsky
,
D.
, and
Linne
,
M.
,
2016
, “
Gas/Fuel Jet Interfaces Under High Pressures and Temperatures
,”
Fuel
,
168
, pp.
14
21
.10.1016/j.fuel.2015.11.061
16.
Wensing
,
M.
,
Vogel
,
T.
, and
Götz
,
G.
,
2016
, “
Transition of Diesel Spray to a Supercritical State Under Engine Conditions
,”
Int. J. Engine Res.
,
17
(
1
), pp.
108
119
.10.1177/1468087415604281
17.
Dahms
,
R. N.
,
Manin
,
J.
,
Pickett
,
L. M.
, and
Oefelein
,
J. C.
,
2013
, “
Understanding High-Pressure Gas-Liquid Interface Phenomena in Diesel Engines
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1667
1675
.10.1016/j.proci.2012.06.169
18.
Dahms
,
R. N.
,
2016
, “
Understanding the Breakdown of Classic Two-Phase Theory and Spray Atomization at Engine-Relevant Conditions
,”
Phys. Fluids
,
28
(
4
), p.
042108
.10.1063/1.4946000
19.
Shariatnia
,
S.
,
Asadi
,
A.
, and
Jarrahbashi
,
D.
,
2021
, “
Experimental Analysis of Supercritical-Assisted Atomization
,”
Phys. Fluids
,
33
(
1
), p.
013314
.10.1063/5.0035169
20.
Xie
,
S.
,
Fu
,
Y.
,
Yi
,
P.
,
Li
,
T.
, and
Chen
,
R.
,
2022
, “
Evaluation of Trans-Critical Transition of Single-and Multi-Component Sprays Under Diesel Engine-Like Conditions
,”
Appl. Therm. Eng.
,
202
, p.
117830
.10.1016/j.applthermaleng.2021.117830
21.
Oefelein
,
J. C.
,
2019
, “
Advances in Modeling Supercritical Fluid Behavior and Combustion in High-Pressure Propulsion Systems
,”
AIAA
Paper No. 2019-0364. 10.1115/2019-0364
22.
Pickett
,
L. M.
,
Manin
,
J.
,
Di Sabatino
,
F.
,
Nguyen
,
T.
, and
Kook
,
S.
,
2023
, “
Mimicking Gas-Turbine Spray Combustion in a Constant-Volume Premixed Combustion Vessel
,”
AIAA
Paper No. 2023-2049.10.2514/6.2023-2049
23.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE Trans.
, 105, pp.
82
111
.10.4271/960034
24.
Sim
,
W. J.
, and
Daubert
,
T. E.
,
1980
, “
Prediction of Vapor-Liquid Equilibria of Undefined Mixtures
,”
Ind. Eng. Chem. Process Des. Dev.
,
19
(
3
), pp.
386
393
.10.1021/i260075a010
25.
Edwards
,
J. T.
,
2020
, “
Jet Fuel Properties
,”
Air Force Research Laboratory
, Wright-Patterson Air Force Base, OH, Report No. AFRL-RQ-WP-TR-2020-0017.
26.
NIST
,
2023
, “
NIST Chemistry WebBook
,” accessed Nov. 2022, https://webbook.nist.gov/chemistry/
27.
PubChem
, 2022, “
Explore Chemistry
,” accessed Nov. 2022, https://pubchem.ncbi.nlm.nih.gov/
28.
Luning Prak
,
D. J.
,
Cowart
,
J. S.
, and
Trulove
,
P. C.
,
2016
, “
Density and Viscosity From 293.15 to 373.15 K, Speed of Sound and Bulk Modulus From 293.15 to 343.15 K, Surface Tension, and Flash Point of Binary Mixtures of Bicyclohexyl and 1, 2, 3, 4-Tetrahydronaphthalene or Trans-Decahydronaphthalene at 0.1 MPa
,”
J. Chem. Eng. Data
,
61
(
1
), pp.
650
661
.10.1021/acs.jced.5b00790
29.
Koller
,
T. M.
,
Klein
,
T.
,
Giraudet
,
C.
,
Chen
,
J.
,
Kalantar
,
A.
,
van der Laan
,
G. P.
,
Rausch
,
M. H.
, and
Fröba
,
A. P.
,
2017
, “
Liquid Viscosity and Surface Tension of n-Dodecane, n-Octacosane, Their Mixtures, and a Wax Between 323 and 573 K by Surface Light Scattering
,”
J. Chem. Eng. Data
,
62
(
10
), pp.
3319
3333
.10.1021/acs.jced.7b00363
30.
Edwards
,
J. T.
,
2017
, “
Reference Jet Fuels for Combustion Testing
,”
AIAA
Paper No. 2017-0416. 10.2514/6.2017-0416
31.
Esclapez
,
L.
,
Ma
,
P. C.
,
Mayhew
,
E.
,
Xu
,
R.
,
Stouffer
,
S.
,
Lee
,
T.
,
Wang
,
H.
, and
Ihme
,
M.
,
2017
, “
Fuel Effects on Lean Blow-Out in a Realistic Gas Turbine Combustor
,”
Combust. Flame
,
181
, pp.
82
99
.10.1016/j.combustflame.2017.02.035
32.
Mueller
,
C. J.
,
Cannella
,
W. J.
,
Bruno
,
T. J.
,
Bunting
,
B.
,
Dettman
,
H. D.
,
Franz
,
J. A.
,
Huber
,
M. L.
, et al.,
2012
, “
Methodology for Formulating Diesel Surrogate Fuels With Accurate Compositional, Ignition-Quality, and Volatility Characteristics
,”
Energy Fuels
,
26
(
6
), pp.
3284
3303
.10.1021/ef300303e
33.
Colket
,
M.
, and
Heyne
,
J.
,
2021
,
Fuel Effects on Operability of Aircraft Gas Turbine Combustors
,
American Institute of Aeronautics and Astronautics, Inc
., Reston, VA.
34.
Lin
,
R.
, and
Tavlarides
,
L. L.
,
2012
, “
Thermophysical Properties Needed for the Development of the Supercritical Diesel Combustion Technology: Evaluation of Diesel Fuel Surrogate Models
,”
J. Supercrit. Fluids
,
71
, pp.
136
146
.10.1016/j.supflu.2012.08.003
You do not currently have access to this content.