Abstract

Solid particle erosion of dusty energy recovery turbine blades has a great impact on the operating economics and safety of the unit. To mitigate the erosion of blade and improve the aerodynamic performance of the turbine, a multi-objective optimization method for turbine cascade based on the experimental design method, genetic algorithm and CFD multiphase flow simulation was developed. The optimization results show that the number of stator and rotor blades and the trailing edge angle at 50% blade span are the main parameters affecting the efficiency and blade erosion of the dusty turbine. By reducing the number of stator blades and the circumferential bending angle of the stator trailing edge, the impingement velocity and impingement probability of particles impinging on the stator trailing edge decrease by 7.5%–16.8% and 8.9%–46.2%, respectively. Additionally, compared with the original design, the flow separation loss and secondary flow intensity of the rotor blade row are suppressed by adjusting the load distribution and inlet attack angle of the rotor; thus, the turbine efficiency effectively improves by 2.28%. Meanwhile, the optimized blade reduces the particle impingement velocity and probability on the rotor leading edge, and the erosion condition of the rotor leading edge decreases by 70%.

References

1.
Bai
,
X.
,
Yao
,
Y.
,
Han
,
Z.
,
Zhang
,
J.
, and
Zhang
,
S.
,
2020
, “
Study of Solid Particle Erosion on Helicopter Rotor Blades Surfaces
,”
Appl. Sci.
,
10
(
3
), pp.
977
993
.10.3390/app10030977
2.
Castorrini
,
A.
,
Venturini
,
P.
,
Corsini
,
A.
, and
Rispoli
,
F.
,
2019
, “
Numerical Simulation of the Blade Aging Process in an Induced Draft Fan Due to Long Time Exposition to Fly Ash Particles
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011025
.10.1115/1.4041127
3.
Taherkhani
,
B.
,
Anaraki
,
A. P.
,
Kadkhodapour
,
J.
,
Farahani
,
N. K.
, and
Tu
,
H.
,
2019
, “
Erosion Due to Solid Particle Impact on the Turbine Blade: Experiment and Simulation
,”
J. Failure Anal. Prev.
,
19
(
6
), pp.
1739
1744
.10.1007/s11668-019-00775-y
4.
Saxena
,
S.
,
Jothiprasad
,
G.
,
Bourassa
,
C.
, and
Pritchard
,
B.
,
2017
, “
Numerical Simulation of Particulates in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031013
.10.1115/1.4034982
5.
Catalina
,
T.
,
James
,
D.
, and
Trevor
,
W. C.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.10.1002/adem.201500371
6.
Deng
,
Z. W.
,
2019
, “
Effect of Blade Erosion on Performance of Axial Compressor
,”
Harbin Engineering University
,
Harbin, China
.
7.
Dehouve
,
J.
,
Nardin
,
P.
, and
Zeghmati
,
M.
,
1999
, “
Erosion Study of Final Stage Blading of Low Pressure Steam Turbines
,”
Appl. Surf. Sci.
,
144–145
(
98
), pp.
238
243
.10.1016/S0169-4332(98)00804-6
8.
Chang
,
J.
,
Zhao
,
J.
,
Zhang
,
K.
, and
Gao
,
J.
,
2016
, “
Hydrodynamic Modeling of an Industrial Turbulent Fluidized Bed Reactor With FCC Particles
,”
Powder Technol.
,
304
, pp.
134
142
.10.1016/j.powtec.2016.04.048
9.
Shen
,
J.
,
Zhou
,
F. C.
,
Yu
,
P.
, and Luo, Y. B.,
2014
, “
Studies on Fouling of Flue Gas Turbine in FCCU
,”
Pet. Process. Petrochem.
,
45
(
6
), pp.
26
31
.http://www.sylzyhg.com/EN/abstract/abstract1430.shtml
10.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
, Bentley, B. I., and Fletcher, T. H., 2005, “
High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME
Paper No. GT 2005-68479.10.1115/GT2005-68479
11.
Shi
,
R. F.
,
2015
,
Fracture Failure Analysis and Prevention of the Flue Gas Turbine Expander Blade at FCC
,
East China University of Science and Technology
,
Shanghai, China
.
12.
El-Batsh
,
H.
, and
Haselbacher
,
H.
, “
Effect of Turbulence Modeling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces
,”
ASME
Paper No. 2000-GT-0519.10.1115/2000-GT-0519
13.
Alidokht
,
S. A.
,
Lengaigne
,
J.
,
Klemberg-Sapieha
,
J. E.
,
Yue
,
S.
, and
Chromik
,
R. R.
,
2019
, “
Effect of Microstructure and Properties of Ni-WC Composite Coatings on Their Solid Particle Erosion Behavior
,”
J. Mater. Eng. Performance
,
28
(
3
), pp.
1532
1543
.10.1007/s11665-019-03956-w
14.
Cai
,
L.-X.
,
Mao
,
J.-R.
,
Wang
,
S.-S.
,
Di
,
J.
, and
Feng
,
Z.-P.
,
2015
, “
Experimental Investigation on Erosion Resistance of Iron Boride Coatings for Steam Turbines at High Temperatures
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
5
), pp.
636
645
.10.1177/1350650114557105
15.
Liu
,
W. Z.
,
2019
,
Study on the Technology and Properties of Detonation Gun Sprayed Cr3C2-NiCr Coatings
,
Lanzhou University of Technology
,
Lanzhou, China
.
16.
Dong
,
X. H.
,
2015
,
Study on Erosion Wear Behavior of Solid Practice for Cermet Coating
,
Beijing Institute of Petrochemical Technology
,
Beijing, China
.
17.
Wang
,
S.-S.
,
Liu
,
G.-W.
,
Mao
,
J.-R.
,
He
,
Q.-G.
, and
Feng
,
Z.-P.
,
2010
, “
Effects of Coating Thickness, Test Temperature, and Coating Hardness on the Erosion Resistance of Steam Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), pp.
022102
022108
.10.1115/1.3155796
18.
Trezona
,
R. I.
, and
Hutchings
,
I. M.
,
2001
, “
Resistance of Paint Coatings to Multiple Solid Particle Impact: Effect of Coating Thickness and Substrate Material
,”
Prog. Org. Coat.
,
41
(
1–3
), pp.
85
92
.10.1016/S0300-9440(00)00154-5
19.
Ivashchenko
,
A.
,
Bennett
,
E.
, and
Marscher
,
W. D.
,
2009
, “
Applying Computational Fluid Dynamics to Predict Turbomachinery Erosion Rates
,”
Meeting of the Society for Machinery Failure Prevention Technology on Failure Prevention: Implementation, Success Stories and Lessons Learned
, Dayton, OH, Apr. 28–30, pp.
31
33
.
20.
Dai
,
L. P.
,
Yu
,
M. Z.
, and
Dai
,
Y. P.
,
2007
, “
Nozzle Passage Aerodynamic Design to Reduce Solid Particle Erosion of a Supercritical Steam Turbine Control Stage
,”
Wear
,
262
(
1–2
), pp.
104
111
.10.1016/j.wear.2006.04.010
21.
Wang
,
S.-S.
,
Cai
,
L.-X.
,
Mao
,
J.-R.
,
Zhang
,
J.-J.
, and
Xu
,
Y.-T.
,
2013
, “
Mechanisms of Steam Turbine Blade Particle Erosion and Crucial Parameters for Minimizing Blade Erosion
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
5
), pp.
546
556
.10.1177/0957650913495384
22.
Wang
,
X.
,
Zhang
,
X.
,
Zhu
,
Y.
,
Zhang
,
X.
,
Li
,
W.
, and
Chen
,
H.
,
2019
, “
Effect of Blade Tip Leakage Flow on Erosion of a Radial Inflow Turbine for Compressed Air Energy Storage System
,”
Energy
,
178
, pp.
195
206
.10.1016/j.energy.2019.04.139
23.
Barsi
,
D.
,
Perrone
,
A.
,
Qu
,
Y.
,
Ratto
,
L.
,
Ricci
,
G.
,
Sergeev
,
V.
, and
Zunino
,
P.
,
2018
, “
Compressor and Turbine Multidisciplinary Design for Highly Efficient Microgas Turbine
,”
J. Therm. Sci.
,
27
(
3
), pp.
259
269
.10.1007/s11630-018-1007-2
24.
Pierret
,
S.
,
Filomeno Coelho
,
R.
, and
Kato
,
H.
,
2007
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscip. Optim.
,
33
(
1
), pp.
61
70
.10.1007/s00158-006-0033-y
25.
Wen
,
S.
,
Wang
,
J.
,
Li
,
T.
, and
Xi
,
G.
,
2014
, “
Reducing Solid Particle Erosion of an Axial Fan With Sweep and Lean Using Multidisciplinary Design
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
14
), pp.
2584
2603
.10.1177/0954406214521409
26.
Aponte
,
R. D.
,
Teran
,
L. A.
,
Grande
,
J. F.
,
Coronado
,
J. J.
,
Ladino
,
J. A.
,
Larrahondo
,
F. J.
, and
Rodríguez
,
S. A.
,
2020
, “
Minimizing Erosive Wear Through a CFD Multi-Objective Optimization Methodology for Different Operating Points of a Francis Turbine
,”
Renewable Energy
,
145
, pp.
2217
2232
.10.1016/j.renene.2019.07.116
27.
Pan
,
J. N.
,
2019
,
Study on the Particle Dynamics Behavior in the Flue Gas Turbine Based on the Critical Kinetic Energy Model
,
China University of Petroleum
,
Qingdao, China
.
28.
Cai
,
L.
,
Yao
,
J.
,
Hou
,
Y.
,
Wang
,
S.
,
Li
,
Y.
, and
Feng
,
Z.
,
2023
, “
Numerical Analysis of Catalyst Particle Deposition Characteristics in a Flue Gas Turbine With an Improved Particle Motion and Deposition Model
,”
Proc. Inst. Mech. Eng., Part A
, 237(8), pp. 1645–1661.10.1177/09576509231188183
29.
Cai
,
L.
,
Wang
,
S.
,
Li
,
Y.
,
Mao
,
J.
,
Li
,
F.
,
Liu
,
Z.
, and
Gao
,
J.
,
2021
, “
Experimental and Numerical Studies on Rebound Characteristics of Non-Spherical Particles Impacting on Stainless-Steel at High Temperature
,”
Powder Technol.
,
381
, pp.
110
121
.10.1016/j.powtec.2020.12.004
30.
Wang
,
S. S.
,
Mao
,
J. R.
,
Cai
,
L. X.
,
Zhang
,
J. J.
, and
Xu
,
Y. T.
,
2012
, “
Influence of the Inlet Channel Flow of a Steam Turbine on Solid Particle Erosion of the Control Stage Nozzles
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
5
), pp.
636
649
.10.1177/0957650912446398
31.
Romei
,
A.
, and
Persico
,
G.
, “
Novel Shape Parametrization Technique Applied to the Optimization of a Supersonic ORC Turbine Cascade: Oslo, Norway
,”
ASME
Paper No. GT2018-76732.10.1115/GT2018-76732
32.
Leylek
,
Z.
,
Neely
,
A.
, and
Ray
,
T.
,
2018
,
Global Surrogate Modeling of Gas Turbine Aerodynamic Performance
,
The University of New South Wales
,
Sydney, Australia
.
33.
Gmbh
,
D.
,
2021
,
Methods for Multidisciplinary Optimization and Robustness Analysis
,
ANSYS Inc
.,
Canonsburg, PA
.
34.
Geller
,
M.
,
Schemmann
,
C.
, and
Kluck
,
N.
, “
Optimization of the Operation Characteristic of a Highly Stressed Centrifugal Compressor Impeller Using Automated Optimization and Metamodeling Methods: Charlotte, North Carolina, United States
,”
ASME
Paper No. GT2017-63262.10.1115/GT2017-63262
35.
Badjan
,
G.
,
Poloni
,
C.
,
Pike
,
A.
, and Ince, N.,
2015
,
Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences
,
Springer International Publishing
,
Spain
.
36.
Cai
,
L.
,
Yao
,
J.
,
Hou
,
Y.
,
Li
,
Y.
,
Wang
,
S.
, and
Mao
,
J.
,
2023
, “
Numerical Study on Aerodynamic Performance and Particle Erosion Characteristics of Flue Gas Turbine
,”
Therm. Sci.
, 27(5), pp.
4291
4305
.10.2298/TSCI221125072C
You do not currently have access to this content.