Abstract

With air traffic expected to grow 5% annually until the year 2030, alternative fuels such as hydrogen are being investigated in order to tackle the current environmental crisis. Due to safety concerns, future hydrogen combustion chambers will require new designs of injection systems and are expected to operate under multimode combustion regimes. From a large-eddy-simulation (LES) perspective, a prerequisite for the shift toward new hydrogen combustion chamber technologies is a robust turbulent combustion model capable of functioning in non-premixed conditions. Turbulent combustion modeling using flame front filtering is a well-developed strategy in premixed combustion (filtered-tabulated chemistry for large-Eddy-simulation (F-TACLES)). This approach has been extended to non-premixed flames however, it suffers from high flame filter size sensitivity. Moreover, thin hydrogen flame fronts will result in lower resolution on the LES grid, potentially amplifying this issue. In order to address the feasibility of the non-premixed F-TACLES model applied to hydrogen fuel, simple one-dimensional and two-dimensional laminar counterflow diffusion flames are computed. The model is then tested on the three-dimensional Sandia hydrogen jet flame with a Reynolds number of 10,000. Simulations and a priori tests show that tabulated subgrid-scale correction terms are stiff and can result in nonphysical results, however the model is capable of correctly reproducing non-premixed flame structures for small filter sizes.

References

1.
Okolie
,
J. A.
,
Patra
,
B. R.
,
Mukherjee
,
A.
,
Nanda
,
S.
,
Dalai
,
A. K.
, and
Kozinski
,
J. A.
,
2021
, “
Futuristic Applications of Hydrogen in Energy, Biorefining, Aerospace, Pharmaceuticals and Metallurgy
,”
Int. J. Hydrogen Energy
,
46
(
13
), pp.
8885
8905
.10.1016/j.ijhydene.2021.01.014
2.
Puggelli
,
S.
,
Leparoux
,
J.
,
Brunet
,
C.
,
Mercier
,
R.
,
Liberatori
,
L.
,
Zurbach
,
S.
,
Cabot
,
G.
, and
Grisch
,
F.
,
2022
, “
Application of an Automatic Mesh Convergence Procedure for the Large Eddy Simulation of a Multipoint Injection System
,”
ASME
Paper No. GT2022-82272.10.1115/GT2022-82272
3.
Mercier
,
R.
,
Guiberti
,
T.
,
Chatelier
,
A.
,
Durox
,
D.
,
Gicquel
,
O.
,
Darabiha
,
N.
,
Schuller
,
T.
, and
Fiorina
,
B.
,
2016
, “
Experimental and Numerical Investigation of the Influence of Thermal Boundary Conditions on Premixed Swirling Flame Stabilization
,”
Combust. Flame
,
171
, pp.
42
58
.10.1016/j.combustflame.2016.05.006
4.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
5.
Barlow
,
R. S.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.10.1016/j.combustflame.2011.11.013
6.
Berger
,
L.
,
Attili
,
A.
, and
Pitsch
,
H.
,
2022
, “
Synergistic Interactions of Thermodiffusive Instabilities and Turbulence in Lean Hydrogen Flames
,”
Combust. Flame
,
244
, p.
112254
.10.1016/j.combustflame.2022.112254
7.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards
.
8.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press, Cambridge, UK.
9.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
10.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.10.1016/0360-1285(85)90002-4
11.
Klimenko
,
A. Y.
, and
Bilger
,
R. W.
,
1999
, “
Conditional Moment Closure for Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
25
(
6
), pp.
595
687
.10.1016/S0360-1285(99)00006-4
12.
Mahmoud
,
R.
,
Jangi
,
M.
,
Ries
,
F.
,
Fiorina
,
B.
,
Janicka
,
J.
, and
Sadiki
,
A.
,
2019
, “
Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach
,”
Appl. Sci.
,
9
(
7
), p.
1320
.10.3390/app9071320
13.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
14.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.10.1016/j.combustflame.2009.09.015
15.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdić
,
A.
,
Janicka
,
J.
, and
Geyer
,
D.
, et al.,
2015
, “
Challenging Modeling Strategies for LES of Non-Adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.10.1016/j.combustflame.2015.07.036
16.
Péquin
,
A.
,
Iavarone
,
S.
,
Malpica Galassi
,
R.
, and
Parente
,
A.
,
2022
, “
The Partially Stirred Reactor Model for Combustion Closure in Large Eddy Simulations: Physical Principles, Sub-Models for the Cell Reacting Fraction, and Open Challenges
,”
Phys. Fluids
,
34
(
5
), p.
055122
.10.1063/5.0090970
17.
Gruhlke
,
P.
,
Inanc
,
E.
,
Mercier
,
R.
,
Fiorina
,
B.
, and
Kempf
,
A. M.
,
2021
, “
A Simple Post-Processing Method to Correct Species Predictions in Artificially Thickened Turbulent Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2977
2984
.10.1016/j.proci.2020.06.215
18.
Maio
,
G.
,
Cailler
,
M.
,
Mercier
,
R.
, and
Fiorina
,
B.
,
2019
, “
Virtual Chemistry for Temperature and CO Prediction in LES of Non-Adiabatic Turbulent Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2591
2599
.10.1016/j.proci.2018.06.131
19.
Bénard
,
P.
,
Lartigue
,
G.
,
Moureau
,
V.
, and
Mercier
,
R.
,
2019
, “
Large-Eddy Simulation of the Lean-Premixed PRECCINSTA Burner With Wall Heat Loss
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5233
5243
.10.1016/j.proci.2018.07.026
20.
Mercier
,
R.
,
Cailler
,
M.
, and
Fiorina
,
B.
,
2017
, “
LES Simulation of the Cambridge Stratified Flame Using Optimized Virtual Mechanisms
,”
AIAA
Paper No. 2017-0606.10.2154/6.2017-0606
21.
Coussement
,
A.
,
Schmitt
,
T.
, and
Fiorina
,
B.
,
2015
, “
Filtered Tabulated Chemistry for Non-Premixed Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1183
1190
.10.1016/j.proci.2014.06.010
22.
Obando Vega
,
P. J.
,
Coussement
,
A.
,
Sadiki
,
A.
, and
Parente
,
A.
,
2021
, “
Non-Premixed Filtered Tabulated Chemistry: Filtered Flame Modeling of Diffusion Flames
,”
Fuels
,
2
(
2
), pp.
87
107
.10.3390/fuels2020006
23.
Obando Vega
,
P. J.
,
Coussement
,
A.
,
Sadiki
,
A.
, and
Parente
,
A.
,
2022
, “
Non-Premixed Filtered Tabulated Chemistry for LES: Evaluation on Sandia Flames D and E
,”
Fuels
,
3
(
3
), pp.
486
508
.10.3390/fuels3030030
24.
Darabiha
,
N.
,
1992
, “
Transient Behaviour of Laminar Counterflow Hydrogen-Air Diffusion Flames With Complex Chemistry
,”
Combust. Sci. Technol.
,
86
(
1–6
), pp.
163
181
.10.1080/00102209208947193
25.
Williams
,
F.
,
2014
, “
Chemical-Kinetic Mechanisms for Combustion Applications,” Mechanical and Aerospace Engineering (Combustion Research)
,
San Diego, CA
.
26.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
Design of a Massively Parallel CFD Code for Complex Geometries
,”
C. R. Méc.
,
339
(
2–3
), pp.
141
148
.10.1016/j.crme.2010.12.001
27.
Aguerre
,
F.
,
1994
, “
Etude Expérimentale et Numérique Des Flammes Laminaires Étirees Stationnaires et Instationnaires
,” Ph.D. thesis,
Ecole centrale de Paris, Châtenay-Malabry, France
.
28.
Barlow
,
R.
, and
Carter
,
C.
,
1994
, “
Raman/Rayleigh/LIF Measurements of Nitric Oxide Formation in Turbulent Hydrogen Jet Flames
,”
Combust. Flame
,
97
(
3–4
), pp.
261
280
.10.1016/0010-2180(94)90020-5
29.
Barlow
,
R.
,
1996
, “
Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames
,”
Sandia National Laboratories (SNL-CA)
,
Livermore, CA
, Technical Report No. 1.
30.
Barlow
,
R.
,
Fiechtner
,
G.
,
Carter
,
C.
, and
Flury
,
M.
,
2002
, “
Sandia/ETH-Zurich CO/H2/N2 Flame Data-Release 1.1
,”
Sandia National Laboratories
, Livermore, CA, pp.
1
14
.
31.
Smith
,
N.
,
Bilger
,
R.
, and
Chen
,
J.-Y.
,
1992
, “
Modelling of Nonpremixed Hydrogen Jet Flames Using a Conditional Moment Closure Method
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
263
269
.10.1016/S0082-0784(06)80035-4
32.
Chen
,
J.-Y.
, and
Chang
,
W.-C.
,
1996
, “
Flamelet and PDF Modeling of CO and NOx Emissions From a Turbulent, Methane Hydrogen Jet Nonpremixed Flame
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2207
2214
.10.1016/S0082-0784(96)80047-6
33.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
You do not currently have access to this content.