Abstract

If pure hydrogen is used as a fuel in high-temperature fuel cells, waste heat must be removed by air cooling, which requires increased power consumption for supplying excess air. This study presents a hydrogen-fed solid oxide fuel cell (SOFC) that uses water instead of air for stack cooling and improved system performance. A novel SOFC system with energy cascade utilization is also proposed using cooling water as the working fluid for a steam turbine. Water cooling for the SOFC stack cooling reduced the stack power and efficiency but significantly reduced the power consumption for supplying excess air by more than 60%. Under ambient SOFC operating pressure, the net power and efficiency of the proposed system were increased by 25.6% and 12.2%p compared to the air-cooled system, respectively. At an SOFC operating pressure of 1000 kPa, the proposed hybrid system with energy cascade utilization achieved improvements of 10.2% in net power and 7.5%p in net efficiency, leading to efficiency higher than 73%. This study is significant in that it proposes a novel high-efficiency SOFC system with energy cascade utilization by using two-phase water as a cooling medium and working fluid of steam turbine.

References

1.
IEA
,
2015
, “
Technology Roadmap Hydrogen and Fuel Cells
,”
IEA
,
Paris, France
.
2.
Dicks
,
A. L.
, and
Rand
,
D. A. J.
,
2018
,
Fuel Cell Systems Explained
,
Glasgow, UK
.
3.
Park
,
S. K.
, and
Kim
,
T. S.
,
2006
, “
Comparison Between Pressurized Design and Ambient Pressure Design of Hybrid Solid Oxide Fuel Cell-Gas Turbine Systems
,”
J. Power Sources
,
163
(
1
), pp.
490
499
.10.1016/j.jpowsour.2006.09.036
4.
Hassmann
,
K.
,
2001
, “
SOFC Power Plants, the Siemens-Westinghouse Approach
,”
Fuel Cells
,
1
(
1
), pp.
78
84
.10.1002/1615-6854(200105)1:1<78::AID-FUCE78>3.0.CO;2-Q
5.
Bernardi
,
D.
,
Bozzolo
,
M.
,
Marsano
,
F.
,
Tarnowski
,
O.
, and
Agnew
,
G.
,
2005
, “
Ejectors Design in the Rolls-Royce 1mw Hybrid System
,”
ASME
Paper No. GT2005-68085.10.1115/GT2005-68085
6.
Kobayashi
,
Y.
,
Ando
,
Y.
,
Kabata
,
T.
,
Nishiura
,
M.
,
Tomida
,
K.
, and
Matake
,
N.
,
2011
, “
Extremely High-Efficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-Cycle System
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
48
(
3
), pp.
9
15
.https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf
7.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2002
, “
Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J Power Sources
,
109
(
1
), pp.
111
120
.10.1016/S0378-7753(02)00051-4
8.
Park
,
S. K.
,
Oh
,
K. S.
, and
Kim
,
T. S.
,
2007
, “
Analysis of the Design of a Pressurized SOFC Hybrid System Using a Fixed Gas Turbine Design
,”
J. Power Sources
,
170
(
1
), pp.
130
139
.10.1016/j.jpowsour.2007.03.067
9.
Campanari
,
S.
,
Mastropasqua
,
L.
,
Gazzani
,
M.
,
Chiesa
,
P.
, and
Romano
,
M. C.
,
2016
, “
Predicting the Ultimate Potential of Natural Gas SOFC Power Cycles With CO2 Capture – Part A: Methodology and Reference Cases
,”
J. Power Sources
,
324
, pp.
598
614
.10.1016/j.jpowsour.2016.05.104
10.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
, “
Performance Comparison of Two Combined SOFC-Gas Turbine Systems
,”
J. Power Sources
,
165
(
1
), pp.
307
314
.10.1016/j.jpowsour.2006.11.069
11.
Akkaya
,
A. V.
,
2007
, “
Modeling and Simulation of Hydrogen Fed SOFC-GT Hybrid System
,”
Proceedings International Hydrogen Energy Congress and Exhibition
, IHEC, Oarai, Japan, Apr. 16–19.https://www.researchgate.net/profile/Ali-Akkaya-3/publication/276060579_Modeling_and_Simulation_of_Hydrogen_Fed_SOFCGT_Hybrid_System/links/555026a408ae93634ec8be58/Modeling-and-Simulation-of-Hydrogen-Fed-SOFC-GT-Hybrid-System.pdf
12.
Hajabdollahi
,
Z.
, and
Fu
,
P. F.
,
2017
, “
Multi-Objective Based Configuration Optimization of SOFC-GT Cogeneration Plant
,”
Appl. Therm. Eng.
,
112
, pp.
549
559
.10.1016/j.applthermaleng.2016.10.103
13.
Huang
,
Y.
, and
Turan
,
A.
,
2019
, “
Fuel Sensitivity and Parametric Optimization of SOFC—GT Hybrid System Operational Characteristics
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100407
.10.1016/j.tsep.2019.100407
14.
Wang
,
X.
,
Lv
,
X.
, and
Weng
,
Y.
,
2020
, “
Performance Analysis of a Biogas-Fueled SOFC/GT Hybrid System Integrated With Anode-Combustor Exhaust Gas Recirculation Loops
,”
Energy
,
197
, p.
117213
.10.1016/j.energy.2020.117213
15.
Buonomano
,
A.
,
Calise
,
F.
,
d'Accadia
,
M. D.
,
Palombo
,
A.
, and
Vicidomini
,
M.
,
2015
, “
Hybrid Solid Oxide Fuel Cells-Gas Turbine Systems for Combined Heat and Power: A Review
,”
Appl. Energy
,
156
, pp.
32
85
.10.1016/j.apenergy.2015.06.027
16.
Damo
,
U. M.
,
Ferrari
,
M. L.
,
Turan
,
A.
, and
Massardo
,
A. F.
,
2019
, “
Solid Oxide Fuel Cell Hybrid System: A Detailed Review of an Environmentally Clean and Efficient Source of Energy
,”
Energy
,
168
, pp.
235
246
.10.1016/j.energy.2018.11.091
17.
Hamelin
,
J.
,
Agbossou
,
K.
,
Laperriâ Ere
,
A.
,
Laurencelle
,
F.
, and
Bose
,
T. K.
,
2001
, “
Dynamic Behavior of a PEM Fuel Cell Stack for Stationary Applications
,”
Int. J. Hydrogen Energy
, 26(6), pp.
625
629
.10.1016/S0360-3199(00)00121-X
18.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperrière
,
A.
,
2001
, “
Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack
,”
Fuel Cells
,
1
(
1
), pp.
66
71
.10.1002/1615-6854(200105)1:1<66::AID-FUCE66>3.0.CO;2-3
19.
Cozzolino
,
R.
,
Cicconardi
,
S. P.
,
Galloni
,
E.
,
Minutillo
,
M.
, and
Perna
,
A.
,
2011
, “
Theoretical and Experimental Investigations on Thermal Management of a PEMFC Stack
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
8030
8037
.10.1016/j.ijhydene.2011.01.052
20.
Yang
,
J. C.
,
Park
,
Y. S.
,
Seo
,
S. H.
,
Lee
,
H. J.
, and
Noh
,
J. S.
,
2002
, “
Development of a 50 KW PAFC Power Generation System
,”
J. Power Sources
,
106
(
1–2
), pp.
68
75
.10.1016/S0378-7753(01)01052-7
21.
Kim
,
H. R.
,
Lee
,
J. H.
, and
Kim
,
T. S.
,
2020
, “
Optimal Thermo-Economic Design of a PAFC-ORC Combined Power System
,”
J. Mech. Sci. Technol.
,
34
(
9
), pp.
3863
3874
.10.1007/s12206-020-0837-5
22.
Promsen
,
M.
,
Komatsu
,
Y.
,
Sciazko
,
A.
,
Kaneko
,
S.
, and
Shikazono
,
N.
,
2020
, “
Feasibility Study on Saturated Water Cooled Solid Oxide Fuel Cell Stack
,”
Appl. Energy
,
279
(
1
), p.
115803
.10.1016/j.apenergy.2020.115803
23.
Jing
,
X.
, and
Zheng
,
D.
,
2014
, “
Effect of Cycle Coupling-Configuration on Energy Cascade Utilization for a New Power and Cooling Cogeneration Cycle
,”
Energy Convers. Manag.
,
78
, pp.
58
64
.10.1016/j.enconman.2013.10.038
24.
Aspentech
,
2012
, “
Aspen HYSYS V7.3
,”
Aspentech
,
Bedford, MA
.
25.
García-Camprubí
,
M.
,
Izquierdo
,
S.
, and
Fueyo
,
N.
,
2014
, “
Challenges in the Electrochemical Modelling of Solid Oxide Fuel and Electrolyser Cells
,”
Renew. Sust. Energy Rev.
,
33
, pp.
701
718
.10.1016/j.rser.2014.02.034
26.
Vafaeenezhad
,
S.
,
Hanifi
,
A. R.
,
Laguna-Bercero
,
M. A.
,
Etsell
,
T. H.
, and
Sarkar
,
P.
,
2022
, “
Microstructure and Long-Term Stability of Ni–YSZ Anode Supported Fuel Cells: A Review
,”
Mater. Futures
,
1
(
4
), p.
042101
.10.1088/2752-5724/ac88e7
27.
Hussain
,
S.
, and
Yangping
,
L.
,
2020
, “
Review of Solid Oxide Fuel Cell Materials: Cathode, Anode, and Electrolyte
,”
Energy Transitions
,
4
(
2
), pp.
113
126
.10.1007/s41825-020-00029-8
28.
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Chuachuensuk
,
A.
,
2008
, “
Electrochemical Study of a Planar Solid Oxide Fuel Cell: Role of Support Structures
,”
J. Power Sources
,
177
(
2
), pp.
254
261
.10.1016/j.jpowsour.2007.11.079
29.
Zhao
,
F.
, and
Virkar
,
A. V.
,
2005
, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
,
141
(
1
), pp.
79
95
.10.1016/j.jpowsour.2004.08.057
30.
Hsieh
,
Y. D.
,
Chan
,
Y. H.
, and
Shy
,
S. S.
,
2015
, “
Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
299
, pp.
1
10
.10.1016/j.jpowsour.2015.08.080
31.
Wilcock
,
R. C.
,
Young
,
J. B.
, and
Horlock
,
J. H.
,
2005
, “
The Effect of Turbine Blade Cooling on the Cycle Efficiency of Gas Turbine Power Cycles
,”
ASME J. Eng. Gas Turbine Power
,
127
(
1
), pp.
109
120
.10.1115/1.1805549
32.
Saari
,
J.
,
2010
,
Heat Exchanger Dimensioning
,
Lappeenranta, Finland
.
33.
Kehlhofer
,
R.
,
Hannemann
,
F.
,
Stirnimann
,
F.
, and
Rukes
,
B.
,
2009
,
Combined-Cycle Gas & Steam Turbine Power Plants
,
Pennwell Books
, Tulsa, OK.
34.
Gas Turbine World
,
2020
,
2020 Performance Specs
, 36th ed.,
Gas Turbine World
,
Southport, UK
.
35.
Schäfer
,
F.
,
Egger
,
S.
,
Steiner
,
D.
,
Carré
,
M.
, and
Eichel
,
R. A.
,
2022
, “
Control of Oxygen-to-Carbon Ratio and Fuel Utilization With Regard to Solid Oxide Fuel Cell Systems With Anode Exhaust Gas Recirculation: A Review
,”
J. Power Sources
,
524
(
1
), p.
231077
.10.1016/j.jpowsour.2022.231077
36.
Singh
,
M.
,
Zappa
,
D.
, and
Comini
,
E.
,
2021
, “
Solid Oxide Fuel Cell: Decade of Progress, Future Perspectives and Challenges
,”
Int. J. Hydrogen Energy
,
46
(
54
), pp.
27643
27674
.10.1016/j.ijhydene.2021.06.020
37.
Peters
,
R.
,
Deja
,
R.
,
Engelbracht
,
M.
,
Frank
,
M.
,
Nguyen
,
V. N.
,
Blum
,
L.
, and
Stolten
,
D.
,
2016
, “
Efficiency Analysis of a Hydrogen-Fueled Solid Oxide Fuel Cell System With Anode Off-Gas Recirculation
,”
J. Power Sources
,
328
, pp.
105
113
.10.1016/j.jpowsour.2016.08.002
38.
Promsen
,
M.
,
Selvam
,
K.
,
Komatsu
,
Y.
,
Sciazko
,
A.
,
Kaneko
,
S.
, and
Shikazono
,
N.
,
2022
, “
Metallic PCM-Integrated Solid Oxide Fuel Cell Stack for Operating Range Extension
,”
Energy Convers. Manag.
,
255
(
1
), p.
115309
.10.1016/j.enconman.2022.115309
39.
Ghezel-Ayagh
,
H.
, and
Borglum
,
B. P.
,
2017
, “
Review of Progress in Solid Oxide Fuel Cells at FuelCell Energy
,”
ECS Trans.
,
78
(
1
), pp.
77
86
.10.1149/07801.0077ecst
You do not currently have access to this content.