Abstract

The necessity of increasing the efficiency and reducing the carbon foot-print of machines is pushing centrifugal compressor bearings design to higher and higher peripheral speed and lower oil consumptions especially in the new energy transition fields, resulting in an increase in the bearing temperatures. Therefore, the bearing thermal management starts to play a major role in extending the machine operability and reducing the maintenance frequency. A full three-dimensional (3D) parametric conjugate heat transfer computational fluid dynamic (CFD) model for tilting pad journal bearings (TPJBs) is introduced in this paper to address the temperature aspects of oil-film bearings. The parametric geometry of the model and the automatic mesh update, allow the equilibrium position search to be obtained without adopting any dynamic mesh algorithms. The tilting pad and rotating shaft equilibrium position are automatically calculated with a Newton–Raphson algorithm. The static performance of the TPJB is investigated for different journal diameters, bearing clearance, and operating conditions. The numerical results obtained are compared with experimental data from compressor mechanical running tests to demonstrate the reliability of the model presented. The 3D distributions of the oil pressure, velocity, and temperature given by the CFD model, can be locally optimized to face the new energy transition challenges.

References

1.
Lund
,
J. W.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
.10.1080/05698196408972064
2.
Tieu
,
A. K.
,
1973
, “
Oil-Film Temperature Distribution in an Infinitely Wide Slider Bearing: An Application of the Finite-Element Method
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
311
320
.10.1243/JMES_JOUR_1973_015_053_02
3.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting Pad Journal Bearings With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
.10.1115/1.3261550
4.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribol. Trans.
,
37
(
4
), pp.
771
783
.10.1080/10402009408983359
5.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
.10.1115/1.4030020
6.
Chatterton
,
S.
,
Pennacchi
,
P.
,
Vania
,
A.
,
de Luca
,
A.
, and
Dang
,
P. V.
,
2019
, “
Tribo-Design of Lubricants for Power Loss Reduction in the Oil-Film Bearings of a Process Industry Machine: Modelling and Experimental Tests
,”
Tribol. Int.
,
130
, pp.
133
145
.10.1016/j.triboint.2018.09.014
7.
Chatterton
,
S.
,
Pennacchi
,
P.
,
Vania
,
A.
, and
Dang
,
P. V.
,
2019
, “
Cooled Pads for Tilting-Pad Journal Bearings
,”
Lubricants
,
7
(
10
), p.
92
.10.3390/lubricants7100092
8.
Yang
,
J.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part II: Implementation With Machine Learning
,”
ASME J. Tribol.
,
143
(
1
), p.
011802
.10.1115/1.4047751
9.
Yang
,
J.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics Based Mixing Prediction for Tilt Pad Journal Bearing TEHD Modeling—Part I: TEHD-CFD Model Validation and Improvements
,”
ASME J. Tribol.
,
143
(
1
), p.
011801
.10.1115/1.4047750
10.
Yang
,
J.
, and
Palazzolo
,
A.
,
2022
, “
Deep Convolutional Autoencoder Augmented CFD Thermal Analysis of Bearings With Inter Pad Groove Mixing
,”
Int. J. Heat Mass Transfer
,
188
, p.
122639
.10.1016/j.ijheatmasstransfer.2022.122639
11.
Ding
,
A.
,
Ren
,
X.
,
Li
,
X.
, and
Gu
,
C.
,
2018
, “
Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing
,”
Adv. Tribol.
,
2018
, pp.
1
14
.10.1155/2018/2841303
12.
Armentrout
,
R. W.
,
He
,
M.
,
Haykin
,
T.
, and
Reed
,
A. E.
,
2017
, “
Analysis of Turbulence and Convective Inertia in a Water-Lubricated Tilting-Pad Journal Bearing Using Conventional and CFD Approaches
,”
Tribol. Trans.
,
60
(
6
), pp.
1129
1147
.10.1080/10402004.2016.1251668
13.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-Pad Journal Bearing With Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
.10.1016/j.triboint.2019.03.035
14.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
.10.1115/1.4043349
15.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
Three-Dimensional Thermo-Elasto-Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal Bearing—Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
.10.1115/1.4043350
16.
Li
,
M.
,
Gu
,
C.
,
Pan
,
X.
,
Zheng
,
S.
, and
Li
,
Q.
,
2016
, “
A New Dynamic Mesh Algorithm for Studying the 3D Transient Flow Field of Tilting Pad Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
230
(
12
), pp.
1470
1482
.10.1177/1350650116638610
17.
Andrés
,
L. S.
, and
Li
,
Y.
,
2015
, “
Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings-Benchmarking a Predictive Model
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122503
.10.1115/1.4031344
18.
American Petroleum Institute
,
2014
, “
Standard–Axial and Centrifugal Compressorsand Expander-Compressors for Petroleum, Chemical and Gas Industry Services
,” API 617, 8th Edition,
American Petroleum Institute
,
Washington, DC
.http://musco.ir/wp-content/uploads/2020/05/API-Std-617.pdf
19.
American Petroleum Institute
,
2014
, “
API 670 Standard—Machinery Protection System
,”
American Petroleum Institute (API)
,
Washington, DC
.https://www.api.org/~/media/files/publications/whats%20new/670_e5%20pa.pdf
You do not currently have access to this content.