Abstract

Aviation is known to be one of the most significant contributors to air pollutants. This includes gaseous emissions, like carbon dioxide (CO2) and nitrogen oxides (NOx), and also particulate matter (PM), especially in the form of soot. This study conducted emission measurements on an Allison 250-C20B turboshaft engine operating on Jet A-1 fuel with a focus on gaseous compounds (e.g., ozone precursors) and PM. The different engine loading points were chosen based on the percentage thrust ratios of the International Civil Aviation Organization LTO-Cycle. A standard FTIR/O2/FID system to measure general gaseous combustion compounds, e.g., CO2, carbon monoxide (CO), unburned hydrocarbons (UHC), and NOx. For the investigation of the volatile organic compounds (VOC), which are known to act as ozone precursors, a gas chromatograph was applied. Different measurement methods were used to characterize the PM emissions. For the particle size distribution (PSD), we used two types of electrical mobility analyzers and an aerodynamic aerosol classifier. All measurement systems yielded comparable PSD results, indicating reliable results. The particle measurement methods all show increasing aerosol diameter modes (electrical and aerodynamic) with increased engine loading. The aerosol diameter modes were shifting from 29 nm to 65 nm. The size and shape of different individual particles were evaluated with a scanning electron microscope. A correlation between the injection system and the particle formation was established. Gaseous turboshaft engine emissions show high CO and UHC values at Ground Idle level. NOx levels were the highest at Take-Off conditions. Acetylene and ethylene were the most significant contributors to ozone formation.

References

1.
International Air Transport Association (IATA)
,
2021
, “
Net-Zero Carbon Emissions by 2050
,” IATA, Montreal, QC, Canada, Press Release No. 66.https://www.iata.org/en/pressroom/pressroomarchive/2021-releases/2021-10-04-03/
2.
International Civil Aviation Organization
,
2020
, Doc 9889,
Airport Air Quality Manual
, 2nd ed.,
International Civil Aviation Organization
,
Montreal, QC, Canada
.
3.
International Civil Aviation Organization
,
2017
,
Annex 16 to the Convention of International Civil Aviation Organization: Environmental protection: Volume II - Aircraft Engine Emissions
, 4th ed.,
International Standards and Recommended Practices. International Civil Aviation Organization
,
Montreal, QC, Canada
.
4.
Intergovernmental Panel on Climate Change (IPC), 1999
,
Aviation and the Global Atmosphere
, Prepared in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer, J. E. Penner, H. Lister David, J. Griggs David, D. J. Dokken, and M. McFarland, eds., Cambridge University Press, Cambridge, UK, p.
373
.https://archive.ipcc.ch/ipccreports/sres/aviation/index.php?idp=0
5.
Hinds
,
W. C.
,
1999
,
Aerosol Technology
, 2nd ed.,
Wiley
,
Nashville, TN
.
6.
European Commission
,
2002
, “
Directive 2002/3/ec of the European Parliament and of the Council of 12 February 2002 Relating to Ozone in Ambient Air
,”
J. Eur. Communities
,
OJ
(
L67
), pp.
14
30
.https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:067:0014:0030:EN:PDF
7.
Latella
,
A.
,
Stani
,
G.
,
Cobelli
,
L.
,
Duane
,
M.
,
Junninen
,
H.
,
Astorga
,
C.
, and
Larsen
,
B. R.
,
2005
, “
Semicontinuous GC Analysis and Receptor Modeling for Source Apportionment of Ozone Precursor Hydrocarbons in Bresso, Milan, 2003
,”
J. Chromatogr. A
,
1071
(
1–2
), pp.
29
39
.10.1016/j.chroma.2004.12.043
8.
Adam
,
T. W.
,
Astorga
,
C.
,
Clairotte
,
M.
,
Duane
,
M.
,
Elsasser
,
M.
,
Krasenbrink
,
A.
,
Larsen
,
B. R.
, et al.,
2011
, “
Chemical Analysis and Ozone Formation Potential of Exhaust From Dual-Fuel (Liquefied Petroleum Gas/Gasoline) Light-Duty Vehicles
,”
Atmos. Environ.
,
45
(
17
), pp.
2842
2848
.10.1016/j.atmosenv.2011.03.002
9.
Johnson
,
T. J.
,
Irwin
,
M.
,
Symonds
,
J. P. R.
,
Olfert
,
J. S.
, and
Boies
,
A. M.
,
2018
, “
Measuring Aerosol Size Distributions With the Aerodynamic Aerosol Classifier
,”
Aerosol Sci. Technol.
,
52
(
6
), pp.
655
665
.10.1080/02786826.2018.1440063
10.
Braun-Unkhoff
,
M.
,
Riedel
,
U.
, and
Wahl
,
C.
,
2017
, “
About the Emissions of Alternative Jet Fuels
,”
CEAS Aeronaut. J.
,
8
(
1
), pp.
167
180
.10.1007/s13272-016-0230-3
11.
Voigt
,
C.
,
Kleine
,
J.
,
Sauer
,
D.
,
Moore
,
R. H.
,
Bräuer
,
T.
,
Le Clercq
,
P.
,
Kaufmann
,
S.
, et al.,
2021
, “
Cleaner Burning Aviation Fuels Can Reduce Contrail Cloudiness
,”
Commun. Earth Environ.
,
2
(
1
), p.
114
.10.1038/s43247-021-00174-y
12.
Schripp
,
T.
,
Anderson
,
B.
,
Crosbie
,
E. C.
,
Moore
,
R. H.
,
Herrmann
,
F.
,
Oßwald
,
P.
,
Wahl
,
C.
, et al.,
2018
, “
Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 Eclif Ground-Based Measurements Campaign
,”
Environ. Sci. Technol.
,
52
(
8
), pp.
4969
4978
.10.1021/acs.est.7b06244
13.
Cain
,
J.
,
DeWitt
,
M. J.
,
Blunck
,
D.
,
Corporan
,
E.
,
Striebich
,
R.
,
Anneken
,
D.
,
Klingshirn
,
C. D.
,
Roquemore
,
W. M.
, and
Vander Wal
,
R.
,
2013
, “
Characterization of Gaseous and Particulate Emissions From a Turboshaft Engine Burning Conventional, Alternative, and Surrogate Fuels
,”
Energy Fuels
,
27
(
4
), pp.
2290
2302
.10.1021/ef400009c
14.
SAE International
,
2016
, SAE Aerospace Recommended Practice (ARP) 1533C -
Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines
.10.4271/ARP1533C
15.
SAE International
,
2021
, SAE Aerospace Recommended Practice (ARP) 6320A -
Procedure for the Continuous Sampling and Measurement of Non-Volatile Particulate Matter Emissions From Aircraft Turbine Engines
.10.4271/ARP6320A
16.
Corporan
,
E.
,
DeWitt
,
M.
,
Klingshirn
,
C.
,
Cheng
,
M. D.
,
Miake-Lye
,
R.
,
Peck
,
J.
,
Yu
,
Z.
,
Kinsey
,
J.
, and
Knighton
,
B.
, and
AIR FORCE RESEARCH LAB WRIGHT-PATTERSON AFB OH WRIGHT-PATTERSON AFB United States
,
2016
, “
Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions
,”
Air Force Research Laboratory
,
Wright-Patterson Air Force Base, OH
, Report No.
AFRL-RQ-WP-TR-2016-0131
.https://serdp-estcp.org/projects/details/139f2c6f-c86c-4bb8-b061-5fb6e1bd8452#:~:text=Demonstration%20Results,gas%2Dto%2Dparticle%20processes
17.
Masiol
,
M.
, and
Harrison
,
R. M.
,
2014
, “
Aircraft Engine Exhaust Emissions and Other Airport-Related Contributions to Ambient Air Pollution: A Review
,”
Atmos. Environ.
,
95
, pp.
409
455
.10.1016/j.atmosenv.2014.05.070
18.
Wey
,
C. C.
,
Anderson
,
B. E.
,
Hudgins
,
C.
,
Wey
,
C.
,
Li-Jones
,
X.
,
Winstead
,
E.
,
Thornhill
,
L. K.
, et al.,
2006
, “
Aircraft Particle Emissions Experiment (Apex)
,”
NASA
,
Washington, DC
, Report No.
NASA/TM-2006-214382
.https://ntrs.nasa.gov/api/citations/20060046626/downloads/20060046626.pdf
19.
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Plant
,
J. V.
,
Thornhill
,
K. L.
,
Winstead
,
E. L.
,
Ziemba
,
L. D.
, et al.,
2011
, “
Alternative Aviation Fuel Experiment (Aafex)
,”
NASA
,
Washington, DC
, Report No.
NASA/TM-2011-217059
.https://ntrs.nasa.gov/api/citations/20110007202/downloads/20110007202.pdf
20.
International Organization for Standardization
,
2020
,
ISO 15900:2020 Determination of Particle Size Distribution — Differential Electrical Mobility Analysis for Aerosol Particles
, International Organization for Standardization, Geneva, Switzerland.https://www.iso.org/standard/67600.html
21.
Reischl
,
G.
,
1991
, “
Measurement of Ambient Aerosols by the Differential Mobility Analyzer Method: Concepts and Realization Criteria for the Size Range Between 2 and 500 nm
,”
Aerosol Sci. Technol.
,
14
(
1
), pp.
5
24
.10.1080/02786829108959467
22.
Durdina
,
L.
,
Brem
,
B. T.
,
Abegglen
,
M.
,
Lobo
,
P.
,
Rindlisbacher
,
T.
,
Thomson
,
K. A.
,
Smallwood
,
G. J.
,
Hagen
,
D. E.
,
Sierau
,
B.
, and
Wang
,
J.
,
2014
, “
Determination of Pm Mass Emissions From an Aircraft Turbine Engine Using Particle Effective Density
,”
Atmos. Environ.
,
99
, pp.
500
507
.10.1016/j.atmosenv.2014.10.018
23.
Petzold
,
A.
,
Marsh
,
R.
,
Johnson
,
M.
,
Miller
,
M.
,
Sevcenco
,
Y.
,
Delhaye
,
D.
,
Ibrahim
,
A.
, et al.,
2011
, “
Evaluation of Methods for Measuring Particulate Matter Emissions From Gas Turbines
,”
Environ. Sci. Technol.
,
45
(
8
), pp.
3562
3568
.10.1021/es103969v
24.
Karlsson
,
M. N.
, and
Martinsson
,
B. G.
,
2003
, “
Methods to Measure and Predict the Transfer Function Size Dependence of Individual Dmas
,”
J. Aerosol Sci.
,
34
(
5
), pp.
603
625
.10.1016/S0021-8502(03)00020-X
25.
von der Weiden
,
S.-L.
,
Drewnick
,
F.
, and
Borrmann
,
S.
,
2009
, “
Particle Loss Calculator – A New Software Tool for the Assessment of the Performance of Aerosol Inlet Systems
,”
Atmos. Meas. Tech.
,
2
(
2
), pp.
479
494
.10.5194/amt-2-479-2009
26.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press, Boca Raton, FL
.10.1201/9781420086058
27.
Kinsey
,
J. S.
,
Corporan
,
E.
,
Pavlovic
,
J.
,
DeWitt
,
M.
,
Klingshirn
,
C.
, and
Logan
,
R.
,
2019
, “
Comparison of Measurement Methods for the Characterization of the Black Carbon Emissions From a t63 Turboshaft Engine Burning Conventional and Fischer-Tropsch Fuels
,”
J. Air Waste Manage. Assoc.
,
69
(
5
), pp.
576
591
.10.1080/10962247.2018.1556188
28.
Klingshirn
,
C. D.
,
DeWitt
,
M. J.
,
Striebich
,
R.
,
Anneken
,
D.
,
Shafer
,
L.
,
Corporan
,
E.
,
Wagner
,
M.
, and
Brigalli
,
D.
,
2012
, “
Hydroprocessed Renewable Jet Fuel Evaluation, Performance, and Emissions in a t63 Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
051506
.10.1115/1.4004841
29.
Corporan
,
E.
,
DeWitt
,
M. J.
,
Klingshirn
,
C. D.
,
Striebich
,
R.
, and
Cheng
,
M.-D.
,
2010
, “
Emissions Characteristics of Military Helicopter Engines With Jp-8 and Fischer-Tropsch Fuels
,”
J. Propul. Power
,
26
(
2
), pp.
317
324
.10.2514/1.43928
30.
Corporan
,
E.
,
DeWitt
,
M. J.
,
Belovich
,
V.
,
Pawlik
,
R.
,
Lynch
,
A. C.
,
Gord
,
J. R.
, and
Meyer
,
T. R.
,
2007
, “
Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer−Tropsch Jet Fuel
,”
Energy Fuels
,
21
(
5
), pp.
2615
2626
.10.1021/ef070015j
31.
Corbin
,
J. C.
,
Schripp
,
T.
,
Anderson
,
B. E.
,
Smallwood
,
G. J.
,
LeClercq
,
P.
,
Crosbie
,
E. C.
,
Achterberg
,
S.
, et al.,
2022
, “
Aircraft-Engine Particulate Matter Emissions From Conventional and Sustainable Aviation Fuel Combustion: Comparison of Measurement Techniques for Mass, Number, and Size
,”
Atmos. Meas. Tech.
,
15
(
10
), pp.
3223
3242
.10.5194/amt-15-3223-2022
32.
Anderson
,
B. E.
,
Branham
,
H. S.
,
Hudgins
,
C. H.
,
Plant
,
J. V.
,
Ballenthin
,
J. O.
,
Miller
,
T. M.
, et al.,
2005
, “
Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (Excavate)
,”
NASA
,
Washington, DC
, Report No.
NASA/TM-2005-213783
.https://ntrs.nasa.gov/citations/20050214696
33.
Johnson
,
T. J.
,
Olfert
,
J. S.
,
Symonds
,
J. P. R.
,
Johnson
,
M.
,
Rindlisbacher
,
T.
,
Swanson
,
J. J.
,
Boies
,
A. M.
, et al.,
2015
, “
Effective Density and Mass-Mobility Exponent of Aircraft Turbine Particulate Matter
,”
J. Propul. Power
,
31
(
2
), pp.
573
582
.10.2514/1.B35367
34.
Liati
,
A.
,
Brem
,
B. T.
,
Durdina
,
L.
,
Vögtli
,
M.
,
Dasilva
,
Y. A. R.
,
Eggenschwiler
,
P. D.
, and
Wang
,
J.
,
2014
, “
Electron Microscopic Study of Soot Particulate Matter Emissions From Aircraft Turbine Engines
,”
Environ. Sci. Technol.
,
48
(
18
), pp.
10975
10983
.10.1021/es501809b
35.
Wal
,
R. L. V.
,
Bryg
,
V. M.
, and
Huang
,
C.-H.
,
2014
, “
Aircraft Engine Particulate Matter: Macro- Micro- and Nanostructure by HRTEM and Chemistry by XPS
,”
Combust. Flame
,
161
(
2
), pp.
602
611
.10.1016/j.combustflame.2013.09.003
You do not currently have access to this content.