Abstract

The flow structures and heat transfer within rotating cavities of aero-engine axial compressors influence the thermal expansion of the rotor disks, and consequently the blade-tip clearances. To investigate the flow field at the bore and lower cavity region, experimental measurements have been acquired in an engine-representative test facility. Axial, tangential, and radial velocities were measured using a miniature five-hole probe at a range of axial and radial positions. Time-averaged results from 28 tests carried out at nondimensional parameters comparable to engine conditions: 1.3 × 104 ≤ Rez ≤ 8.2 × 104, 3.0 × 105 ≤ Reθ ≤ 3.2 × 106, 0.11 ≤ Ro ≤ 3.24, 0.14 ≤ βΔT ≤ 0.36 are presented in this paper. The axial and tangential velocity measurements conform to previous work, while the radial velocity component provides quantitative evidence of an asymmetric toroidal vortex in the cavity gap, biased toward the downstream disk. The vortex is characterized by the local vorticity and grows in strength and size as Rossby number increases above Ro = 0.34 to 1.63. The effect of βΔT on the vortex formation is negligible compared to the influence of the tangential Reynolds number as the local circulation is suppressed by the Coriolis forces at high rotational speeds. Both the tangential and radial velocity results suggest that as Ro is increased, the proportion of air that is radially ingested and expelled from a cavity decreases.

References

1.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.10.1115/1.4052649
2.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.10.1115/1.4031039
3.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.10.1115/1.4048601
4.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.10.1017/S0022112079002093
5.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.10.1115/1.2927991
6.
Miché
,
N. D. D.
,
2009
, “
Flow and Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Ph.D. thesis
,
University of Sussex
,
Sussex, UK
.https://sussex.figshare.com/articles/thesis/Flow_and_heat_transfer_measurements_inside_a_heated_multiple_rotating_cavity_with_axial_throughflow/23314028
7.
Long
,
C. A.
,
Miché
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.10.1016/j.ijheatfluidflow.2007.04.010
8.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2021
, “
Experimental and Computational Investigation of Flow Structure in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071026
.10.1115/1.4049482
9.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C. A.
,
2021
, “
Experimental and Computational Investigation of Flow Structure of Buoyancy Induced Flow in Heated Rotating Cavities
,”
J. Global Power Propul. Soc.
,
5
, pp.
148
163
.10.33737/jgpps/140595
10.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.10.1115/1.4003965
11.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
ASME
Paper No. GT2014-26228. 10.1115/GT2014-26228
12.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.10.1115/1.4049100
13.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.10.1115/1.4031355
14.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.10.1115/1.4050951
15.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174. 10.111/GT2014-27174
16.
Sun
,
Z.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Amirante
,
D.
,
2022
, “
Large Eddy Simulation Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121023
.10.1115/1.4055686
17.
Puttock-Brown
,
M. R.
,
2018
, “
Experimental and Numerical Investigation of Flow Structure and Heat Transfer in Gas Turbine HP Compressor Secondary Air Systems
,”
Ph.D. thesis
,
University of Sussex
,
Sussex, UK
.https://sussex.figshare.com/articles/thesis/Experimental_and_numerical_investigation_of_flow_structure_and_heat_transfer_in_gas_turbine_HP_compressor_secondary_air_systems/23456549
18.
Hall
,
B. F.
, and
Povey
,
T.
,
2017
, “
The Oxford Probe: An Open Access Five-Hole Probe for Aerodynamic Measurements
,”
Meas. Sci. Technol.
,
28
(
3
), p.
035004
.10.1088/1361-6501/aa53a8
19.
Fox
,
E. C.
,
Puttock-Brown
,
M. R.
, and
Davies
,
S. J.
,
2022
, “
Design and Development of a Five-Hole Probe Calibrator and Traverse to Investigate Ingestion in Rotating Cavities of HP Compressors
,”
ASME
Paper No. GT2022-80940. 10.1115/GT2022-80940
20.
Puttock
,
M.
, and
Rose
,
M.
,
2016
, “Measurement of Thermal Wakes in Compressor Secondary Air Systems Using Low Frequency Thermocouple Data,”
XXIII Biennial Symposium on Measuring Techniques in Turbomachinery
, Stuttgart, Germany, Sept. 1–2, Paper No. Session A1-2.https://sussex.figshare.com/articles/presentation/Measurement_of_thermal_wakes_in_compressor_secondary_air_systems_using_low_frequency_thermocouple_data/23457275
21.
Long
,
C. A.
,
1994
, “
Disk Heat Transfer in a Rotating Cavity With an Axial Throughflow of Cooling Air
,”
Int. J. Heat Fluid Flow
,
15
(
4
), pp.
307
316
.10.1016/0142-727X(94)90016-7
22.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.10.1115/1.4050631
23.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Villazon
,
J. R.
,
Valencia
,
A. G.
, and
Porras
,
A. F. S.
,
2021
, “
High Speed Single Cavity Rig With Axial Throughflow of Cooling Air: Heat Transfer and Fluid Phenomena
,”
14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, European Turbomachinery Society
, Gdańsk, Poland, Apr. 12–16, Paper No. ETC2021-540.https://euroturbo.eu/paper/ETC2021-540.pdf
24.
Sultanian
,
B.
,
2018
,
Gas Turbines: Internal Flow Systems Modelling
, Vol.
44
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.