Abstract

This paper presents the application of the recurrence plot as an alternative for preprocessing the raw data. The recurrence plots can extract the nonlinear and transient response and are sensitive to slight variations in the signal frequency, amplitude, and waveform. Thus, it is an alternative technique for improving the sensitivity; consequently, the prognostic algorithms can predict with better resolution. The data were obtained from an experimental 12 m wind turbine. The transmission was instrumented with three accelerometers and three gyroscopes; the generator's current and voltage were monitored. The difficulty in producing the phase plane using acceleration data is its integration to obtain the kinetic and potential signal energies. This limitation is overcome by integrating the data using the empirical mode decomposition and the shift principle. The results show good sensitivity for predicting variations in the operating conditions and are the basis for other prognostic analyses.

References

1.
Webber
,
C. L.
,
Ioana
,
C.
,
Marwan
,
N.
,
Symposium
,
I.
, and
Plots
,
R.
,
2015
, “
Recurrence Plots and Their Quantifications
:
Expanding Horizons
,”
Proceedings of the 6th International Symposium on Recurrence Plots
, Grenoble, France, June 17–19.https://link.springer.com/book/10.1007/978-3-319-29922-8
2.
Eckmann
,
J.
,
Oliffson
,
S.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
Eur. Lett.
,
4
(
9
), pp.
973
977
.10.1209/0295-5075/4/9/004
3.
Thiel
,
M.
,
Romano
,
M.
, and
Kurths
,
J.
,
2006
, “
Spurious Structures in Recurrence Plots Induced by Embedding
,”
Nonlinear Dyn.
,
44
(
1–4
), pp.
299
305
.10.1007/s11071-006-2010-9
4.
Faure
,
P.
, and
Lesne
,
A.
,
2015
, “
Estimating Kolmogorov Entropy From Recurrence Plots
,”
Recurrence Quantification Analysis
,
C. L.
Webber
and
N.
Marwan
, eds.,
Springer International Publishing
,
Switzerland
, pp.
45
63.
5.
Schultz
,
D.
,
Spiegel
,
S.
,
Marwan
,
N.
, and
Albayrak
,
S.
,
2015
, “
Approximation of Diagonal Line Based Measures in Recurrence Quantification Analysis
,”
Phys. Lett. A
,
379
(
14–15
), pp.
997
1011
.10.1016/j.physleta.2015.01.033
6.
Belaire-Franch
,
J.
, and
Contreras
,
D.
,
2002
, “
Recurrence Plots in Nonlinear Time Series Analysis: Free Software
,”
J. Stat. Software
,
7
(
9
), pp.
1
18
.10.18637/jss.v007.i09
7.
Carrión
,
A.
, and
Miralles
,
R.
,
2016
, “
New Insights for Testing Linearity and Complexity With Surrogates: A Recurrence Plot Approach
,”
C. L.
Webber
, ed.,
Recurrence Plots and Their Quantifications: Expanding Horizons, Springer Proceedings in Physics
, Vol. 180, Springer, Switzerland, pp.
91
112
.
8.
Le Bot
,
O.
,
Mars
,
J. I.
, and
Gervaise
,
C.
,
2015
, “
Similarity Matrix Analysis and Divergence Measures for Statistical Detection of Unknown Deterministic Signals Hidden in Additive Noise
,”
Phys. Lett. A
,
379
(
40–41
), pp.
2597
2609
.10.1016/j.physleta.2015.06.004
9.
Fontaine
,
S.
,
Dia
,
S.
, and
Renner
,
M.
,
2011
, “
Nonlinear Friction Dynamics on Fibrous Materials, Application to the Characterization of Surface Quality. Part I: Global Characterization of Phase Spaces
,”
Nonlinear Dyn.
,
66
, pp.
625
646
.10.1007/s11071-010-9938-5
10.
Leonardi
,
G.
,
2018
, “
A Method for the Computation of Entropy in the Recurrence Quantification Analysis of Categorical Time Series
,”
Phys. A
,
512
, pp.
824
836
.10.1016/j.physa.2018.08.058
11.
Spiegel
,
S.
,
Schultz
,
D.
, and
Marwan
,
N.
,
2016
, “
Approximate Recurrence Quantification Analysis (aRQA) in Code of Best Practice
,”
Recurrence Plots and Their Quantification: Expanding Horizons
,
D.
Schultz
and
N.
Marwan
, eds.,
Springer International Publishing
,
Switzerland
, pp.
113
135
.
12.
Sipers
,
A.
,
Borm
,
P.
, and
Peeters
,
R.
,
2017
, “
Robust Reconstruction of a Signal From Its Unthresholded Recurrence Plot Subject to Disturbances
,”
Phys. Lett. A
,
381
(
6
), pp.
604
615
.10.1016/j.physleta.2016.12.028
13.
Pham
,
T. D.
, and
Yan
,
H.
,
2018
, “
Spatial-Dependence Recurrence Sample Entropy
,”
Phys. A
,
494
, pp.
581
590
.10.1016/j.physa.2017.12.015
14.
Girault
,
J.-M.
,
2015
, “
Recurrence and Symmetry of Time Series: Application to Transition Detection
,”
Chaos, Solitons Fractals
,
77
, pp.
11
28
.10.1016/j.chaos.2015.04.010
15.
Tang
,
L.
,
Lv
,
H.
,
Yang
,
F.
, and
Yu
,
L.
,
2015
, “
Complexity Testing Techniques for Time Series Data: A Comprehensive Literature Review
,”
Chaos, Solitons Fractals
,
81
, pp.
117
135
.10.1016/j.chaos.2015.09.002
16.
Kwuimy
,
C.
,
Samadani
,
M.
, and
Nataraj
,
C.
,
2014
, “
Bifurcation Analysis of a Nonlinear Pendulum Using Recurrence and Statistical Methods: Applications to Fault Diagnostics
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1963
1975
.10.1007/s11071-014-1261-0
17.
Ramdani
,
S.
,
Bouchara
,
F.
,
Lagarde
,
J.
, and
Lesne
,
A.
,
2016
, “
Recurrence Plots of Discrete-Time Gaussian Stochastic Processes
,”
Phys. D
,
330
, pp.
17
31
.10.1016/j.physd.2016.04.017
18.
Torres-Contreras
,
I.
,
Jáuregui-Correa
,
J. C.
,
Echeverría-Villagómez
,
S.
,
Benítez-Rangel
,
J. P.
, and
Camacho-Martínez
,
S.
,
2021
, “
Diagnosis of Friction on an Unbalanced Rotor by Phase-Shift Empirical Mode Decomposition Integration and Recurrence Plot
,”
Appl. Sci.
,
11
(
17
), p.
7973
.10.3390/app11177973
19.
Jáuregui
,
J. C.
,
2011
, “
Phase Diagram Analysis for Predicting Nonlinearities and Transient Responses
,”
Recent Advances in Vibrations Analysis
,
N.
Baddour
, ed., Recent Advances in Vibrations Analysis, InTech, London, U
K
, pp.
27
46
.10.5772/861
20.
Torres-Contreras
,
I.
,
Jáuregui-Correa
,
J. C.
,
López-Cajún
,
C. S.
, and
Echeverría-Villagómez
,
S.
,
2021
, “
Effects of Phase Shift Errors in Recurrence Plot for Rotating Machinery Fault Diagnosis
,”
Appl. Sci.
,
11
(
2
), p.
873
.10.3390/app11020873
21.
Jauregui-Correa
,
J. C.
,
2019
, “
Identification of Nonlinearities in Mechanical Systems Using Recurrence Plots
,”
Nonlinear Structural Dynamics and Damping, Mechanisms and Machine Science Book
,
Jauregui
,
J.
eds.,
Springer
,
Cham
, p.
69
.
22.
Letellier
,
C.
,
2006
, “
Estimating the Shannon Entropy: Recurrence Plots Versus Symbolic Dynamics
,”
Phys. Rev. Lett.
,
96
(
25
), pp.
55
60
.10.1103/PhysRevLett.96.254102
You do not currently have access to this content.