Abstract

The performance of high temperature heat pumps (HTHPs) is highly dependent on the efficiency of its main components, which need to be optimally matched especially in closed cycles. The design process is therefore a challenging task as many disciplines and varying modeling depths need to be considered. Consequently, this is usually a sequential procedure beginning with cycle definition and raising the fidelity for component design. Fundamental design decisions are made based on assumptions for component performance. Mistakes in the phase of cycle definition are hard to reverse in later design stages. Therefore, this work introduces holistic approaches to the multidisciplinary design of closed Brayton cycles. Aerodynamic compressor design with two-dimensional throughflow analysis and geometry-based heat exchanger sizing are simultaneously optimized with thermodynamic cycle parameters. The presented methodologies make use of highly sophisticated design tools drawing on many years of experience in gas turbine design. The results demonstrate that holistic heat pump optimization can be successfully performed with reasonable computational effort. The advantages compared to conventional sequential design are elaborated. A comparison of two optimization concepts indicates that splitting up the design vectors of cycle and components shows the tendency to improve robustness. Finally, the tradeoff between system compactness and performance is demonstrated with a multi-objective optimization study.

References

1.
Rehfeldt
,
M.
,
Fleiter
,
T.
, and
Toro
,
F.
,
2018
, “
A Bottom-Up Estimation of the Heating and Cooling Demand in European Industry
,”
Energy Effic.
,
11
(
5
), pp.
1057
1082
.10.1007/s12053-017-9571-y
2.
Robert de Boer
,
A. M.
,
Zühlsdorf
,
B.
, and
Arpagaus
,
C.
,
2020
, “
Strengthening Industrial Heat Pump Innovation: Decarbonizing Industrial Heat
,” SINTEF, Trondheim, Norway.
3.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
4.
Marina
,
A.
,
Spoelstra
,
S.
,
Zondag
,
H. A.
, and
Wemmers
,
A. K.
,
2021
, “
An Estimation of the European Industrial Heat Pump Market Potential
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110545
.10.1016/j.rser.2020.110545
5.
Oehler
,
J.
,
Gollasch
,
J.
,
Tran
,
A. P.
, and
Nicke
,
E.
,
2021
, “
Part Load Capability of a High Temperature Heat Pump With Reversed Brayton Cycle
,”
13th IEA Heat Pump Conference
, Jeju, Korea, Apr.
26
29
.https://www.researchgate.net/publication/357144127_Part_Load_Capability_of_a_High_Temperature_Heat_Pump_with_Reversed_Brayton_Cycle
6.
Gollasch
,
J. O.
,
Agelidou
,
E.
,
Henke
,
M.
, and
Stathopoulos
,
P.
,
2022
, “Conceptual Study of Thermally Coupled Micro Gas Turbines and High Temperature Heat Pumps for Trigeneration,”
ASME
Paper No. GT2022-81959.10.1115/GT2022-81959
7.
Lampe
,
M.
,
de Servi
,
C.
,
Schilling
,
J.
,
Bardow
,
A.
, and
Colonna
,
P.
,
2019
, “
Toward the Integrated Design of Organic Rankine Cycle Power Plants: A Method for the Simultaneous Optimization of Working Fluid, Thermodynamic Cycle, and Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111009
.10.1115/1.4044380
8.
Persky
,
R.
,
Sauret
,
E.
, and
Ma
,
L.
,
2014
, “
Optimisation Methods for Coupled Thermodynamic and 1D Design of Radial-Inflow Turbines
,”
ASME
Paper No. FEDSM2014-21665.10.1115/FEDSM2014-21665
9.
Schuster
,
S.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2020
, “
Design and Off-Design Optimisation of an Organic Rankine Cycle (ORC) System With an Integrated Radial Turbine Model
,”
Appl. Therm. Eng.
,
174
, p.
115192
.10.1016/j.applthermaleng.2020.115192
10.
Bahamonde
,
S.
,
Pini
,
M.
,
de Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
.10.1115/1.4035841
11.
Tacconi
,
J.
,
Visser
,
W. P. J.
, and
Verstraete
,
D.
,
2019
, “
Multi-Objective Optimisation of Semi-Closed Cycle Engines for High-Altitude UAV Propulsion
,”
Aeronaut. J.
,
123
(
1270
), pp.
1938
1958
.10.1017/aer.2019.62
12.
Schmeink, J.
, and
Schnoes, M.
,
2022
, “
Automated Component Preliminary Design and Evaluation in the Overall Engine Using Fully Coupled Approaches
,”
ASME
Paper No. GT2022-80634.10.1115/GT2022-80634
13.
Hendler
,
M.
,
Lockan
,
M.
,
Bestle
,
D.
, and
Flassig
,
P.
,
2018
, “
Component-Specific Preliminary Engine Design Taking Into Account Holistic Design Aspects
,”
Int. J. Turbomach., Propul. Power
,
3
(
2
), p.
12
.10.3390/ijtpp3020012
14.
Meroni
,
A.
,
Zühlsdorf
,
B.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2018
, “
Design of Centrifugal Compressors for Heat Pump Systems
,”
Appl. Energy
,
232
, pp.
139
156
.10.1016/j.apenergy.2018.09.210
15.
Giuffre
,
A.
,
Ascione
,
F.
,
De Servi
,
C.
, and
Pini
,
M.
,
2022
, “
Data-Driven Modeling of High-Speed Centrifugal Compressors for Aircraft Environmental Control System
,”
Proceedings of Global Power and Propulsion Society
, Chania, Greece, Sept. 18–20, Paper No. GPPS-TC-2022-0091.10.1016/j.ijrefrig.2023.03.019
16.
Reitenbach
,
S.
,
Krumme
,
A.
,
Behrendt
,
T.
,
Schnös
,
M.
,
Schmidt
,
T.
,
Hönig
,
S.
,
Mischke
,
R.
, and
Mörland
,
E.
,
2019
, “
Design and Application of a Multidisciplinary Predesign Process for Novel Engine Concepts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011017
.10.1115/1.4040750
17.
Becker
,
R.-G.
,
Wolters
,
F.
,
Nauroz
,
M.
, and
Otten
,
T.
,
2011
, “
Development of a Gas Turbine Performance Code and Its Application to Preliminary Engine Design
,”
DLRK 2011
.https://www.researchgate.net/publication/225023906_DEVELOP MENT_OF_A_GAS_TURBINE_PERFORMANCE_CODE_AND_ITS_APPLICATION_TO_PRELIMINARY_ENGINE_DESIGN
18.
Schnoes
,
M.
,
Voß
,
C.
, and
Nicke
,
E.
,
2018
, “
Design Optimization of a Multi-Stage Axial Compressor Using Throughflow and a Database of Optimal Airfoils
,”
J. Global Power Propul. Soc.
,
2
, p.
W5N91I
.10.22261/JGPPS.W5N91I
19.
Markus Schnoes
,
E. N.
,
2017
, “
Exploring a Database of Optimal Airfoils for Axial Compressor Design
,” Manchester, UK, Sept. 3–8, Paper No.
ISABE-2017-21493
.https://www.researchgate.net/publication/320345547_Exploring_a_Database_of_Optimal_Airfoils_for_Axial_Compressor_Design
20.
Schnoes
,
M.
, and
Nicke
,
E.
,
2015
, “
Automated Calibration of Compressor Loss and Deviation Correlations
,”
ASME
Paper No. GT2015-42644.10.1115/GT2015-42644
21.
Koch
,
C. C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Flow Compressor Stages
,”
ASME J. Eng. Power
,
103
(
4
), pp.
645
656
.10.1115/1.3230787
22.
Stephan
,
P.
,
Kabelac
,
S.
,
Kind
,
M.
,
Martin
,
H.
,
Mewes
,
D.
, and
Schaber
,
K.
,
2013
,
VDI-Wärmeatlas
,
Springer
,
Berlin/Heidelberg
.10.1007/978-3-642-19981-3
23.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution: A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
24.
Voß
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,”
ISROMAC 15
, Honolulu, HI, Feb.
24
28
.https://www.researchgate.net/publication/266619191_Metamodel_Assisted_Aeromechanical_Optimization_of_a_Transonic_Centrifugal_Compressor
You do not currently have access to this content.