Abstract

Hybrid-electric propulsion for commercial aircraft is currently a key industry interest. Consequently, publications on its design and performance estimation are manifold. However, models addressing characteristics of maintenance, repair, and overhaul (MRO) are virtually unavailable—even though direct maintenance costs (DMC) represent a significant part of direct operating costs (DOC) in commercial aviation. Detailed analysis of hybrid-electric aircraft propulsion degradation and maintenance scenarios must integrate both methods of sizing and design as well as operational factors for conventional and electric subsystems, as operator-specific utilization strongly influences MRO. Accordingly, a holistic engine analysis model is currently being developed using the example of an Airbus A320 aircraft, taking into account flight mission, engine performance, degradation, and MRO. This paper presents an implementation of hybridization into the gas turbine thermodynamic cycle calculation for parallel hybrid-electric (PHE) engine architectures with 2 and 5 MW electric motors, and the approach necessary for resizing hybridized gas turbine components. Turbomachinery loading throughout representative short-haul missions is analyzed for conventional and hybrid-electric configurations based on the V2500 high-bypass turbofan engine, whereby unknown or uncertain boundary conditions are considered in a probabilistic sensitivity study. As a result, MRO-driving quantities such as engine performance parameters, atmospheric conditions, and ingested aerosols can be compared. The findings suggest that DMC related to the gas turbine may be considerably lowered through hybridization, as it allows for reduced peak temperatures and more uniform gas turbine operation. However, these gains are at least partially offset by additional components' DMC. For electrical machines, bearings and the stator winding insulation are life-limiting, where the latter becomes increasingly dominant for higher power densities associated with high current densities and copper losses. Thermo-mechanical stresses are considered as driving mechanisms in power electronic systems degradation. Consequently, powerful lightweight machines must be balanced against tolerable thermal and electrical loads to achieve suitable service life.

References

1.
Prentice
,
B.
,
DiNota
,
A.
,
Constanza
,
D.
,
Reagan
,
I.
,
Franzoni
,
C.
, and
Stelle
,
M.
,
2022
, “
Global Fleet and MRO Market Forecast 2022–2032
,” Oliver Wyman.https://www.oliverwyman.com/ourexpertise/insights/2022/feb/global-fleet-and-mro-market-forecast-2022-2032.html
2.
Sahoo
,
S.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2020
, “
A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft
,”
Aerospace
,
7
(
4
), p.
44
.10.3390/aerospace7040044
3.
Brelje
,
B.
, and
Martins
,
J. R. R. A.
,
2019
, “
Electric, Hybrid, and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches
,”
Prog. Aerosp. Sci.
,
104
, pp.
1
19
.10.1016/j.paerosci.2018.06.004
4.
Ackert
,
S.
,
2011
, “
Engine Maintenance Concepts for Financiers
,”
Aircr. Monitor
,
2
, pp.
1
43
.http://www.aircraftmonitor.com/uploads/1/5/9/9/15993320/engine_mx_concepts_for_financiers___v2.pdf
5.
Rupp
,
O. C.
,
2000
, “
Vorhersage von Instandhaltungskosten bei der Auslegung ziviler Strahltriebwerke
,” Dissertation,
Technische Universität München
,
München, Germany
.
6.
Seemann
,
R.
,
Langhans
,
S.
,
Schilling
,
T.
, and
Gollnick
,
V.
,
2011
, “
Modeling the Life Cycle Cost of Jet Engine Maintenance
,”
60. Deutscher Luft- und Raumfahrtkongress
,
Bremen, Germany
.
7.
Müller
,
M. H.
,
2013
, “
Untersuchungen zum Einfluss der Betriebsbedingungen auf die Schädigung und Instandhaltung von Turboluftstrahltriebwerken
,” Dissertation,
Universität Stuttgart
,
Stuttgart, Germany
.
8.
Scholz
,
A. E.
,
Trifonov
,
D.
, and
Hornung
,
M.
,
2022
, “
Environmental Life Cycle Assessment and Operating Cost Analysis of a Conceptual Battery Hybrid-Electric Transport Aircraft
,”
CEAS Aeronaut. J.
,
13
(
1
), pp.
215
235
.10.1007/s13272-021-00556-0
9.
Schwab
,
A.
,
Thomas
,
A.
,
Bennett
,
J.
,
Robertson
,
E.
, and
Cary
,
S.
,
2021
,
Electrification of Aircraft: Challenges, Barriers, and Potential Impacts
,
National Renewable Energy Lab
,
Golden, CO
.
10.
Hoelzen
,
J.
,
Liu
,
Y.
,
Bensmann
,
B.
,
Winnefeld
,
C.
,
Elham
,
A.
,
Friedrichs
,
J.
, and
Hanke-Rauschenbach
,
R.
,
2018
, “
Conceptual Design of Operation Strategies for Hybrid Electric Aircraft
,”
Energies
,
11
(
1
), p.
217
.10.3390/en11010217
11.
Finger
,
D. F.
,
Götten
,
F.
,
Braun
,
C.
, and
Bil
,
C.
,
2019
, “
Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft
,”
Asia-Pacific International Symposium on Aerospace Technology
, Surfers Paradise Marriott Resort, Gold Coast, Dec. 4–6
.https://www.researchgate.net/publication/337757069_Cost_Estimation_Methods_for_Hybrid-Electric_General_Aviation_Aircraft
12.
Narjes
,
G.
,
Kauth
,
F.
,
Müller
,
J.
,
Mertens
,
A.
,
Seume
,
J.
, and
Ponick
,
B.
,
2018
, “
High-Speed Permanent Magnet Synchronous Machine for Short-Term Operation in an Electrically Powered High-Lift System
,”
AIAA
Paper No. 2018-498910.2514/62018-4989.
13.
Chung
,
H. S.
,
Wang
,
H.
,
Blaabjerg
,
F.
, and
Pecht
,
M.
,
2015
,
Reliability of Power Electronic Converter Systems
,
Institution of Engineering and Technology
,
Stevenage, UK
.
14.
Seitz
,
A.
,
Nickl
,
M.
,
Stroh
,
A.
, and
Vratny
,
P. C.
,
2018
, “
Conceptual Study of a Mechanically Integrated Parallel Hybrid Electric Turbofan
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
14
), pp.
2688
2712
.10.1177/0954410018790141
15.
Nuic
,
A.
,
Poles
,
D.
, and
Mouillet
,
V.
,
2010
, “
BADA: An Advanced Aircraft Performance Model for Present and Future ATM Systems
,”
Int. J. Adaptive Control Signal Process.
,
24
(
10
), pp.
850
866
.10.1002/acs.1176
16.
Sun
,
J.
,
Hoekstra
,
J. M.
, and
Ellerbroek
,
J.
,
2020
, “
OpenAP: An Open-Source Aircraft Performance Model for Air Transportation Studies and Simulations
,”
Aerospace
,
7
(
8
), p.
104
.10.3390/aerospace7080104
17.
Bien
,
M.
,
Ziaja
,
K.
,
Blanken
,
N.
,
Cao
,
Y.
,
Schuchard
,
L.
,
Göing
,
J.
,
Friedrichs
,
J.
, et al.,
2022
, “
Modelling Degradation Mechanisms in Hybrid-Electric Aircraft Propulsion Systems
,”
25th International Symposium on Airbreathing Engines
,
Ottawa
, ON, Canada, Sept. 25–30, Paper No. ISABE-2021-157.
18.
Inness
,
A.
,
Ades
,
M.
,
Agustí-Panareda
,
A.
,
Barré
,
J.
,
Benedictow
,
A.
,
Blechschmidt
,
A.-M.
,
Dominguez
,
J. J.
, et al.,
2019
, “
The CAMS Reanalysis of Atmospheric Composition
,”
Atmos. Chem. Phys.
,
19
(
6
), pp.
3515
3556
.10.5194/acp-19-3515-2019
19.
Salomon
,
J.
,
Göing
,
J.
,
Lück
,
S.
,
Broggi
,
M.
,
Friedrichs
,
J.
, and
Beer
,
M.
,
2021
, “
Sensitivity Analysis of an Aircraft Engine Model Under Consideration of Dependent Variables
,”
ASME
Paper No. GT2021-58905.10.1115/GT2021-58905
20.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.10.1115/GT2009-59745
21.
Hoenicke
,
P.
,
Ghosh
,
D.
,
Muhandes
,
A.
,
Bhattacharya
,
S.
,
Bauer
,
C.
,
Kallo
,
J.
, and
Willich
,
C.
,
2021
, “
Power Management Control and Delivery Module for a Hybrid Electric Aircraft Using Fuel Cell and Battery
,”
Energy Convers. Manage.
,
244
, p.
114445
.10.1016/j.enconman.2021.114445
22.
Engl. VDI-Gesellschaft Energie und Umwelt
,
1993
, “
Acceptance and Performance Tests on Turbo Compressors and Displacement Compressors; Theory and Examples
,” VDI 2045 Blatt 2.
23.
Davis
,
H.
,
1958
, “
Equivalent Performance Parameters for Turboblowers and Compressors
,”
ASME
Paper No. 56-A-122.10.1115/56-A-122
24.
Goeing
,
J.
,
Seehausen
,
H.
,
Pak
,
V.
,
Lueck
,
S.
,
Seume
,
J. R.
, and
Friedrichs
,
J.
,
2020
, “
Influence of Combined Compressor and Turbine Deterioration on the Overall Performance of a Jet Engine Using RANS Simulation and Pseudo Bond Graph Approach
,”
J. Global Power Propul. Soc.
,
4
, pp.
296
308
.10.33737/jgpps/131109
25.
Kumar
,
S.
,
Mukherjee
,
D.
,
Guchhait
,
P. K.
,
Banerjee
,
R.
,
Srivastava
,
A. K.
,
Vishwakarma
,
D.
, and
Saket
,
R. K.
,
2019
, “
A Comprehensive Review of Condition Based Prognostic Maintenance (CBPM) for Induction Motor
,”
IEEE Access
,
7
, pp.
90690
90704
.10.1109/ACCESS.2019.2926527
26.
Brütsch
,
R.
,
Tari
,
M.
,
Fröhlich
,
K.
,
Weiers
,
T.
, and
Vogelsang
,
R.
,
2008
, “
Insulation Failure Mechanisms of Power Generators
,”
IEEE Electr. Insul. Mag.
,
24
(
4
), pp.
17
25
.10.1109/MEI.2008.4581636
27.
Bonnett
,
A. H.
, and
Yung
,
C.
,
2008
, “
Increased Efficiency Versus Increased Reliability
,”
IEEE Ind. Appl. Mag.
,
14
(
1
), pp.
29
36
.10.1109/MIA.2007.909802
28.
Heising
,
C.
,
O'Donnell
,
P.
,
Singh
,
C.
, and
Wells
,
S. J.
,
1985
, “
Report of Large Motor Reliability Survey of Industrial and Commercial Installations, Part I
,”
IEEE Trans. Ind. Appl.
,
21
(
4
), pp.
853
864
.10.1109/TIA.1985.349532
29.
Wohlers
,
C. M.
,
2021
, “
Permanenterregte Synchronmaschinen hoher Drehmomentdichte
,”
Berichte aus dem IAL 04/2021
,
Tewiss
,
Garbsen
.
30.
Rothe
,
R.
, and
Hameyer
,
K.
,
2011
, “
Life Expectancy Calculation for Electric Vehicle Traction Motors Regarding Dynamic Temperature and Driving Cycles
,” 2011 IEEE International Electric Machines & Drives Conference (
IEMDC
), Niagara Falls, ON, Canada, May 15–18
, pp.
1306
1309
.10.1109/IEMDC.2011.5994793
31.
Madonna
,
V.
,
Giangrande
,
P.
,
Zhao
,
W.
,
Buticchi
,
G.
,
Zhang
,
H.
,
Gerada
,
C.
, and
Galea
,
M.
,
2019
, “
Reliability vs. Performance of Electrical Machines: Partial Discharges Issue
,” 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (
WEMDCD
), Athens, Greece, Apr. 22–23
, Vol.
1
, pp.
77
82
.10.1109/WEMDCD.2019.8887809
32.
Mazzanti
,
G.
,
Montanari
,
G.
,
Simoni
,
L.
, and
Srinivas
,
M.
,
1995
, “
Combined Electro-Thermo-Mechanical Model for Life Prediction of Electrical Insulating Materials
,”
Proceedings of 1995 Conference on Electrical Insulation and Dielectric Phenomena
, Virginia Beach, VA, Oct. 22–25
, pp.
274
277
.10.1109/CEIDP.1995.483716
33.
Lahoud
,
N.
,
Nguyen
,
M. Q.
,
Maussion
,
P.
,
Malec
,
D.
, and
Mary
,
D.
,
2015
, “
Lifetime Model of the Inverter-Fed Motor's Secondary Insulation by Using a Design of Experiments
,”
IEEE Trans. Dielectr. Electr. Insul.
,
22
(
6
), pp.
3170
3176
.10.1109/TDEI.2015.005202
34.
Bagaber
,
B.
,
Heide
,
D.
,
Ponick
,
B.
, and
Mertens
,
A.
,
2022
, “
Efficiency and Lifetime Analysis of Several Airborne Wind Energy Electrical Drive Concepts
,” 24th European Conference on Power Electronics and Applications (
EPE'22 ECCE Europe
), Hanover, Germany, Sept. 5–9, pp.
1
11
.https://ieeexplore.ieee.org/document/9907290
35.
Ebersberger
,
J.
,
Fauth
,
L.
,
Keuter
,
R.
,
Cao
,
Y.
,
Freund
,
Y.
,
Hanke-Rauschenbach
,
R.
,
Ponick
,
B.
,
Mertens
,
A.
, and
Friebe
,
J.
,
2022
, “
Power Distribution and Propulsion System for an All-Electric Short-Range Commuter Aircraft–A Case Study
,”
IEEE Access
,
10
, pp.
114514
114539
.10.1109/ACCESS.2022.3217650
36.
Cao
,
Y.
,
Fauth
,
L.
,
Friebe
,
J.
, and
Mertens
,
A.
,
2022
, “
Potentials to Improve the Post-Fault Performance of a Fault-Tolerant Inverter System in Electrified Aircraft Propulsion System
,” 24th European Conference on Power Electronics and Applications (
EPE'22 ECCE Europe
), Hanover, Germany, Sept. 5–9, pp.
1
8
.https://ieeexplore.ieee.org/document/9907673
37.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
38.
Spearman
,
C.
,
1904
, “
The Proof and Measurement of Association Between Two Things
,”
Am. J. Psychol.
,
15
(
1
), pp.
72
101
.10.2307/1412159
39.
Prots
,
A.
,
Schlüter
,
L.
,
Voigt
,
M.
,
Mailach
,
R.
, and
Meyer
,
M.
,
2023
, “
Sensitivity Analysis of Performance Parameters of a Compressor Blade With Correlated Profile Parameters
,”
ASME
Paper No. GT2023-102442.10.1115/GT2023-102442
40.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
41.
Iman
,
R. L.
, and
Conover
,
W. J.
,
1982
, “
A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables
,”
Commun. Stat. -Simul. Computation
,
11
(
3
), pp.
311
334
.10.1080/03610918208812265
42.
DOT/FAA/AR-02/35
,
2002
,
Statistical Loads Data for the Airbus A-320 Aircraft in Commercial Operation
,
Office of Transportation Research
,
Washington, DC
.
43.
Sun
,
J.
,
2019
, “
Open Aircraft Performance Modeling: Based on an Analysis of Aircraft Surveillance Data
,” Dissertation,
Delft University of Technology
,
Delft, The Netherlands
.
44.
Kettunen
,
T.
,
Hustache
,
J.-C.
,
Fuller
,
I.
,
Howell
,
D.
,
Bonn
,
J.
, and
Knorr
,
D.
,
2005
, “
Flight Efficiency Studies in Europe and the United States
,”
6th USA/Europe Air Traffic Management Seminar
,
Baltimore
, MD, June 27–30, pp.
27
30
.https://kipdf.com/flight-efficiency-studies-in-europeand-the-united-states_5aefeaec7f8b9a3d3b8b4634.html
45.
Smirnov
,
N. V.
,
1936
, “
Sui la Distribution de w2 (Criterium de M. R. v. Mises)
,”
C. R. Acad. Sci.
,
202
, pp.
449
452
.
46.
Aircraft Commerce
,
2006
, “
Aircraft Owner's & Operator's Guide: A320 Family
,”
Aircr. Commerce
,
44
, pp.
30
31
.
47.
Maier
,
H. J.
,
Niendorf
,
T.
, and
Bürgel
,
R.
,
2015
,
Handbuch Hochtemperatur-Werkstofftechnik
, 5th ed.,
Springer
,
Wiesbaden, Germany
.
48.
Donaldson
,
R.
,
Fischer
,
D.
,
Gough
,
J.
, and
Rysz
,
M.
,
2007
, “
Economic Impact of Derated Climb on Large Commercial Engines
,”
2007 Boeing Performance and Flight Operations Engineering Conference
,
General Electric
,
Boston, MA
, pp.
1
8
.https://www.smartcockpit.com/docs/Economic_Impact_of_Derated_Climb_on_Large_Commercial_Engines.pdf
49.
Alozie
,
O.
,
Li
,
Y. G.
,
Diakostefanis
,
M.
,
Wu
,
X.
,
Shong
,
X.
, and
Ren
,
W.
,
2020
, “
Assessment of Degradation Equivalent Operating Time for Aircraft Gas Turbine Engines
,”
Aeronaut. J.
,
124
(
1274
), pp.
549
580
.10.1017/aer.2019.153
You do not currently have access to this content.