Abstract

The gas turbine industry is continuously developing and testing new materials and manufacturing methods to improve the performance and durability of hot section components, which are subjected to extreme conditions. SiAlON and Inconel 718 are especially desirable for turbomachinery applications due to their high strength and high-temperature capabilities. To demonstrate the viability of additive manufacturing for small-scale turbomachinery for 300W scale microturbines, a monolithic rotor with a design speed of 450,000 RPM containing radial turbine and compressor was developed considering additive manufacturing constraints. The geometry was manufactured from SiAlON and Inconel 718 using lithographic ceramic manufacturing and selective laser melting, respectively. The additive manufacturing and thermal process parameters as well as material characterization are described in detail. Surface and computerized tomography scans were conducted for both rotors. While the metallic rotor showed undesirable printing artifacts and a large number of defects, the ceramic part achieved a level of relative precision and surface quality similar to large-scale production via casting. To compare turbomachinery performance, an aerodynamic test facility was developed allowing to measure pressure ratios and efficiency of small compressors. The rotors were tested in engine-realistic speeds, achieving a compressor rotor pressure ratio of 2.2. The ceramic part showed superior efficiency and pressure ratio compared to the Inconel rotor. This can be explained by lower profile and incidence losses due to a higher fidelity physical representation of the model geometry and better surface finish.

References

1.
Badum
,
L.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2021
, “
New Insights From Conceptual Design of an Additive Manufactured 300W Micro Gas Turbine Towards UAV Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p. 021006.10.1115/1.4048695
2.
Isomura
,
K.
,
Teramoto
,
S.
,
Togo
,
S.-I.
,
Hikichi
,
K.
,
Endo
,
Y.
, and
Tanaka
,
S.
,
2006
, “
Effects of Reynolds Number and Tip Clearances on the Performance of a Centrifugal Compressor at Micro Scale
,”
ASME
Paper No. GT2006-90637.10.1115/GT2006-90637
3.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
31004
.10.1115/1.3144162
4.
Klocke
,
F.
,
Klink
,
A.
,
Veselovac
,
D.
,
Aspinwall
,
D. K.
,
Soo
,
S. L.
,
Schmidt
,
M.
,
Schilp
,
J.
,
Levy
,
G.
, and
Kruth
,
J.-P.
,
2014
, “
Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes
,”
CIRP Ann.
,
63
(
2
), pp.
703
726
.10.1016/j.cirp.2014.05.004
5.
Zhang
,
Y.
,
Duda
,
T.
,
Scobie
,
J. A.
,
Sangan
,
C.
,
Copeland
,
C. D.
, and
Redwood
,
A.
,
2018
, “
Design of an Air-Cooled Radial Turbine: Part 1—Computational Modelling
,”
ASME
Paper No. GT2018-76378. 10.1115/GT2018-76378
6.
Wang
,
X.
,
Gong
,
X.
, and
Chou
,
K.
,
2017
, “
Review on Powder-Bed Laser Additive Manufacturing of Inconel 718 Parts
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
231
(
11
), pp.
1890
1903
.10.1177/0954405415619883
7.
Kaya
,
H.
,
1999
, “
The Application of Ceramic-Matrix Composites to the Automotive Ceramic Gas Turbine
,”
Compos. Sci. Technol.
,
59
(
6
), pp.
861
872
.10.1016/S0266-3538(99)00016-0
8.
McLEAN
,
A. F.
,
1970
, “
The Application of Ceramics to the Small Gas Turbine
,”
ASME
Paper No. 70-GT-105. 10.1115/70-GT-105
9.
DeBell
,
G. C.
, and
Secord
,
J. R.
,
1981
, “
Development and Testing of a Ceramic Turbocharger Rotor
,”
ASME
Paper No. 81-GT-195. 10.1115/81-GT-195
10.
Am El-Amir
,
A.
,
El-Maddah
,
A. A.
,
Ewais
,
E. M. M.
,
El-Sheikh
,
S. M.
,
Bayoumi
,
I. M. I.
, and
Ahmed
,
Y. M.
,
2021
, “
Sialon From Synthesis to Applications: An Overview
,”
J. Asian Ceram. Soc.
,
9
(
4
), pp.
1390
1418
.10.1080/21870764.2021.1987613
11.
Layden
,
G. K.
,
1977
, “
Pressureless Sintering of SiAlON Gas Turbine Components
,”
United Technologies Research Center East Hartford Conn
, East Hartfort, CT, Report No.
US Navy Report NADC-75207-30
.https://apps.dtic.mil/sti/citations/ADA041207
12.
Kang
,
S.
,
2002
, “
Fabrication of Functional Mesoscopic Ceramic Parts for Micro Gas Turbine Engines
,”
Dissertation
,
Stanford University
, Stanford, CA.https://www.researchgate.net/publication/252914892_Fabrication_of_functional_mesoscopic_ceramic_parts_for_micro_gas_turbine_engines
13.
Kang
,
S.
,
Johnston
,
J. P.
,
Arima
,
T.
,
Matsunaga
,
M.
,
Tsuru
,
H.
, and
Printz
,
F. B.
,
2004
, “
Microscale Radial-Flow Compressor Impeller Made of Silicon Nitride: Manufacturing and Performance
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
358
365
.10.1115/1.1739246
14.
Liu
,
H. C.
,
Kang
,
S.
,
Prinz
,
F. B.
, and
Stampfl
,
J.
,
2002
, “
Fabrication of Ceramic Components for Micro Gas Turbine Engines
,”
26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B, the American Ceramic Society
, New York, Dec., pp.
43
50
.10.1002/9780470294758.ch5
15.
Zwyssig
,
C.
,
2008
, “
An Ultra-High-Speed Electrical Drive System
,”
Dissertation
,
ETH Zurich
, Zürich, Switzerland.https://www.pespublications.ee.ethz.ch/uploads/tx_ethpublications/main_A4.pdf
16.
Markovic
,
M.
, and
Perriard
,
Y.
,
2006
, “
Simplified Design Methodology for a Slotless Brushless DC Motor
,”
IEEE Trans. Magnetics
,
42
(
12
), pp.
3842
3846
.10.1109/TMAG.2006.884108
17.
Pfister
,
P.-D.
, and
Perriard
,
Y.
,
2010
, “
Very-High-Speed Slotless Permanent-Magnet Motors: Analytical Modeling, Optimization, Design, and Torque Measurement Methods
,”
IEEE Trans. Ind. Electron.
,
57
(
1
), pp.
296
303
.10.1109/TIE.2009.2027919
18.
Cukurel
,
B.
,
2021
, “
Ultra-Micro Gas Turbine Generator
,” Patent No. WO2021144791A1.
19.
Steinbach
,
AG
,
2023
, “
Design Guide
,” Steinbach AG, Detmold, Germany, accessed Sept. 22, 2023, https://www.steinbach-ag.de/en/technical-ceramics/know-how/design-guide.html
20.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
31035
.10.1115/1.4007548
21.
Whitfield
,
A.
,
1990
, “
The Preliminary Design of Radial Inflow Turbines
,”
ASME J. Turbomach.
,
112
(
1
), pp.
50
57
.10.1115/1.2927420
22.
Altun
,
A. A.
,
Prochaska
,
T.
,
Konegger
,
T.
, and
Schwentenwein
,
M.
,
2020
, “
Dense, Strong, and Precise Silicon Nitride-Based Ceramic Parts by Lithography-Based Ceramic Manufacturing
,”
Appl. Sci.
,
10
(
3
), p.
996
.10.3390/app10030996
23.
Mitteramskogler
,
G.
,
Gmeiner
,
R.
,
Felzmann
,
R.
,
Gruber
,
S.
,
Hofstetter
,
C.
,
Stampfl
,
J.
,
Ebert
,
J.
,
Wachter
,
W.
, and
Laubersheimer
,
J.
,
2014
, “
Light Curing Strategies for Lithography-Based Additive Manufacturing of Customized Ceramics
,”
Addit. Manuf.
,
1–4
, pp.
110
118
.10.1016/j.addma.2014.08.003
24.
Schwentenwein
,
M.
, and
Homa
,
J.
,
2015
, “
Additive Manufacturing of Dense Alumina Ceramics
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
1
7
.10.1111/ijac.12319
25.
Laakso
,
P.
,
Riipinen
,
T.
,
Laukkanen
,
A.
,
Andersson
,
T.
,
Jokinen
,
A.
,
Revuelta
,
A.
, and
Ruusuvuori
,
K.
,
2016
, “
Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts
,”
Phys. Procedia
,
83
, pp.
26
35
.10.1016/j.phpro.2016.08.004
26.
ISO 21940-11
,
2005
, “
Mechanical Vibration–Rotor Balancing Part 11: Verfahren Und Toleranzen for Rotoren Mit Starrem Verhalten
,”
British Standards and International Standards Organisation
, London, UK.https://www.en-standard.eu/din-iso-21940-11-mechanical-vibration-rotor-balancing-part-11-procedures-and-tolerances-for-rotors-withrigid-behaviour-iso-21940-11-2016-amd-1-2022/
27.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors
,
Cambridge University Press
, Cambridge, UK.
28.
Fernelius
,
M.
, and
Gorrell
,
S.
,
2014
, “
Thermocouple Recovery Factor for Temperature Measurements in Turbomachinery Test Facilities
,”
AIAA
Paper No. 2014–0791.10.2514/6.2014-0791
29.
B. S. ISO
,
2005
, “
5168: 2005 Measurement of Fluid Flow–Procedures for the Evaluation of Uncertainties
,”
British Standards Int. Standards Organisation
, London, UK.https://www.iso.org/obp/ui/#iso:std:iso:5168:ed-2:v1:en
30.
Kennedy
,
I.
,
Chen
,
Z.
,
Ceen
,
B.
,
Jones
,
S.
, and
Copeland
,
C. D.
,
2019
, “
Experimental Investigation of an Inverted Brayton Cycle for Exhaust Gas Energy Recovery
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p. 032301.10.1115/1.4041109
31.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors
,
ASME Press
,
New York
.
32.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. I.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Glob. Power Propuls. Soc.
,
1
, pp.
2II890
156
.10.22261/2II890
33.
Salviano
,
L. O.
,
Gasparin
,
E. E.
,
Mattos
,
V. C. N.
,
Barbizan
,
B.
,
Saltara
,
F.
,
de Mello
,
P. E. B.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2021
, “
Sensitivity Analysis and Optimization of a CO2 Centrifugal Compressor Impeller With a Vaneless Diffuser
,”
Struct. Multidiscip. Optim.
,
64
(
3
), pp.
1607
1627
.10.1007/s00158-021-02914-2
34.
Javed
,
A.
,
Pecnik
,
R.
,
Olivero
,
M.
, and
van Buijtenen
,
J. P.
,
2012
, “
Effects of Manufacturing Noise on Microturbine Centrifugal Impeller Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p. 103202.10.1115/1.4007120
35.
Came
,
P. M.
, and
Robinson
,
C. J.
,
1998
, “
Centrifugal Compressor Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
139
155
.10.1243/0954406991522239
You do not currently have access to this content.